Browse > Article
http://dx.doi.org/10.5307/JBE.2013.38.2.129

A Theoretical Modeling for Suggesting Unique Mechanism of Adolescent Calcium Metabolism  

Lee, Wang-Hee (Department of Biosystems Machinery Engineering, Chungnam National University)
Cho, Byoung-Kwan (Department of Biosystems Machinery Engineering, Chungnam National University)
Okos, Martin R. (Department of Agricultural and Biological Engineering, Purdue University)
Publication Information
Journal of Biosystems Engineering / v.38, no.2, 2013 , pp. 129-137 More about this Journal
Abstract
Purpose: Modeling has been used for elucidating the mechanism of complex biosystems. In spite of importance and uniqueness of adolescent calcium (Ca) metabolism characterized by a threshold Ca intake, its regulatory mechanism has not been covered and even not proposed. Hence, this study aims at model-based proposing potential mechanisms regulating adolescent Ca metabolism. Methods: Two different hypothetic mechanisms were proposed. The main mechanism is conceived based on Ca-protein binding which induces renal Ca filtration, while additional mechanism assumed that active renal Ca re-absorption regulated Ca metabolism in adolescents. Mathematical models were developed to represent the proposed mechanism and simulated them whether they could produce adolescent Ca profiles in serum and urine. Results: Simulation showed that both mechanisms resulted in the unique behavior of Ca metabolism in adolescents. Based on the simulation insulin-like growth factor-1 (IGF-1) is suggested as a potential regulator because it is related to both growth, a remarkable characteristic of adolescence, and Ca metabolism including absorption and bone accretion. Then, descriptive modeling is employed to conceptualize the hypothesized mechanisms governing adolescent Ca metabolism. Conclusions: This study demonstrated that modeling is a powerful tool for elucidating an unknown mechanism by simulating potential regulatory mechanisms in adolescent Ca metabolism. It is expected that various analytic applications would be plausible in the study of biosystems, particularly with combination of experimental and modeling approaches.
Keywords
Active Ca re-absorption; Adolescent Ca metabolism; Mechanism; Modeling; Ca-protein binding; Insulin-like growth factor-1;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nesbitt, T. and M. K. Drezner. 1993. Insulin-like growth factor-I regulation of renal 25-hydroxyvitamin D-1- hydroxylase activity. Endocrinology. 132(1):133-138.   DOI
2 Nordin, B. E. 1990. Calcium homeostasis. Clin. Biochem. 23(1):3-10.   DOI   ScienceOn
3 Pedersen, K. O. 1972. Protein-bound calcium in human serum. Quantitative examination of binding and its variables by a molecular binding model and clinical chemical implications for measurement of ionized calcium. Scand. J. Clin. Lab. Invest. 30(3):321-329.   DOI
4 Raposo, J. F., L. G. Sobrinho and H. G. Ferreira. 2002. A minimal mathematical model of calcium homeostasis.. J. Clin. Endocrinol. Metab. 87(9):4330-4340.   DOI
5 Rippe, B. 2004. What is the role of albumin in proteinuric glomerulopathies? Nephrol. Dial. Transplant. 19(1): 1-5.   DOI   ScienceOn
6 Rosen, C. J. 2003. Insulin-like growth factor I and calcium balance: evolving concepts of an evolutionary process. Endocrinology. 144(11):4679-4681.   DOI   ScienceOn
7 Saroff, H. A. and M. S. Lewis. 1963. The binding of calcium ions to serum albumin. J. Phys. Chem. 67(6):1211-1216.   DOI
8 Smith, J. M. 1981. Chemical engineering kinetics, 3rd ed. New York: McGraw-Hill.
9 Triffitt, J. T. and M. Owen. 1977. Preliminary studies on the binding of plasma albumin to bone tissue. Calcif. Tissue Res. 23(3):303-305.   DOI
10 Tsai, J. A., A. Lagumdzija, A. Stark and H. Kindmark. 2007. Albumin-bound lipids induce free cytoplasmic calcium oscillations in human osteoblast-like cells. Cell Biochem. Funct. 25(3):245-249.   DOI   ScienceOn
11 Wastney, M. E., J. Ng, D. Smith, B. R. Martin, M. Peacock and C. M. Weaver. 1996. Differences in calcium kinetics between adolescent girls and young women. Am. J. Physiol. 271(1 Pt 2):R208-216.
12 Wills, M. R. and M. R. Lewin. 1971. Plasma calcium fractions and the protein-binding of calcium in normal subjects and in patients with hypercalcaemia and hypocalcaemia. J. Clin. Pathol. 24(9):856-866.   DOI
13 Wortsman, J. and R. B. Traycoff. 1980. Biological activity of protein-bound calcium in serum. Am. J. Physiol. 238(2):E104-107.
14 Wright, N. M., N. Papadea, B. Wentz, B. Hollis, S. Willi and N. H. Bell. 1997. Increased serum 1,25-dihydroxyvitamin D after growth hormone administration is not parathyroid hormone-mediated. Calcif. Tissue Int. 61(2): 101-103.   DOI
15 Yakar, S. and C. J. Rosen. 2003. From mouse to man: redefining the role of insulin-like growth factor-I in the acquisition of bone mass. Exp. Biol. Med. (Maywood). 228(3):245-252.   DOI
16 Zeng, H., K. K. Chittur and W. R. Lacefield. 1999. Analysis of bovine serum albumin adsorption on calcium phosphate and titanium surfaces. Biomaterials. 20(4): 377-384.   DOI   ScienceOn
17 Hill, K. M., M. Braun, M. Kern, B. R. Martin, J. W. Navalta, D. A. Sedlock, L. McCabe, G. P. McCabe, M. Peacock and C. M. Weaver. 2008. Predictors of calcium retention in adolescent boys. J. Clin. Endocrinol. Metab. 93(12): 4743-4748.   DOI   ScienceOn
18 Jackman, L. A., S. S. Millane, B. R. Martin, O. B. Wood, G. P. McCabe, M. Peacock and C. M. Weaver. 1997. Calcium retention in relation to calcium intake and postmenarcheal age in adolescent females. Am. J. Clin. Nutr. 66(2):327-333.   DOI
19 Kaysen, G. A., V. Rathore, G. C. Shearer and T. A. Depner. 1995. Mechanisms of hypoalbuminemia in hemodialysis patients. Kidney Int. 48(2):510-516.   DOI   ScienceOn
20 Komarova, S. V., R. J. Smith, S. J. Dixon, S. M. Sims and L. M. Wahl. 2003. Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling. Bone. 33(2):206-215.   DOI   ScienceOn
21 Lee, Y., L. Escamilla-Trevino, R. A. Dixon and E. O. Voit. 2012. Functional analysis of metabolic channeling and regulation in lignin biosynthesis: a computational approach. PLoS Comput. Biol. 8(11):e1002769.   DOI
22 Krabbe, S., I. Transbol and C. Christiansen. 1982. Bone mineral homeostasis, bone growth and mineralisation during years of pubertal growth: a unifying concept. Arch. Dis. Child. 57(5):359-363.   DOI   ScienceOn
23 Kreutz, C. and J. Timmer. 2009. Systems biology: experimental design. FEBS J. 276(4):923-942.   DOI   ScienceOn
24 Lee, W.-H., M. Wastney, G. Jackson, B. Martin and C. Weaver. 2011. Interpretation of 41Ca data using compartmental modeling in post-menopausal women. Anal Bioanal Chem. 399(4):1613-1622.   DOI
25 Linse, S., B. Jonsson and W. J. Chazin. 1995. The effect of protein concentration on ion binding. Proc. Natl. Acad. Sci. U.S.A. 92(11):4748-4752.   DOI   ScienceOn
26 Lund, U., A. Rippe, D. Venturoli, O. Tenstad, A. Grubb and B. Rippe. 2003. Glomerular filtration rate dependence of sieving of albumin and some neutral proteins in rat kidneys. Am. J. Physiol. 284(6):F1226-1234.
27 Matkovic, V. 1991. Calcium metabolism and calcium requirements during skeletal modeling and consolidation of bone mass. Am. J. Clin. Nutr. 54(1 Suppl): 245S-260S.   DOI
28 Matkovic, V., D. Fontana, C. Tominac, P. Goel and C. H. Chesnut 3rd. 1990. Factors that influence peak bone mass formation: a study of calcium balance and the inheritance of bone mass in adolescent females. Am. J. Clin. Nutr. 52(5):878-888.   DOI
29 Matkovic, V. and R. P. Heaney. 1992. Calcium balance during human growth: evidence for threshold behavior. Am. J. Clin. Nutr. 55(5):992-996.   DOI
30 Matkovic, V. and J. Z. Ilich. 1993. Calcium requirements for growth: are current recommendations adequate? Nutr. Rev. 51(6):171-180.
31 Braun, M., B. R. Martin, M. Kern, G. P. McCabe, M. Peacock, Z. Jiang and C. M. Weaver. 2006. Calcium retention in adolescent boys on a range of controlled calcium intakes. Am. J. Clin. Nutr. 84(2):414-418.
32 Mauras, N., K. O. O'Brien, S. Welch, A. Rini, K. Helgeson, N. E. Vieira and A. L. Yergey. 2000. Insulin-like growth factor I and growth hormone (GH) treatment in GHdeficient humans: differential effects on protein, glucose, lipid and calcium metabolism. J. Clin. Endocrinol. Metab. 85(4):1686-1694.
33 Besarab, A., A. DeGuzman and J. W. Swanson. 1981. Effect of albumin and free calcium concentrations on calcium binding in vitro. J. Clin. Pathol. 34(12):1361-1367.   DOI
34 Binnerts, A., G. R. Swart, J. H. Wilson, N. Hoogerbrugge, H. A. Pols, J. C. Birkenhager and S. W. Lamberts. 1992. The effect of growth hormone administration in growth hormone deficient adults on bone, protein, carbohydrate and lipid homeostasis, as well as on body composition. Clin. Endocrinol. (Oxf). 37(1):79-87.   DOI
35 Caverzasio, J. and J. P. Bonjour. 1988. Influence of calcium on phosphate transport in cultured kidney epithelium. Am. J. Physiol. 254(2 Pt 2):F217-222.
36 Caverzasio, J. and J. P. Bonjour. 1993. Growth factors and renal regulation of phosphate transport. Pediatr. Nephrol. (Berlin, Germany). 7(6):802-806.   DOI
37 Doty, S. E. and R. C. Seagrave. 2000. Human water, sodium and calcium regulation during space flight and exercise. Acta Astronaut. 46(9):591-604.   DOI   ScienceOn
38 Fatayerji, D., E. B. Mawer and R. Eastell. 2000. The role of insulin-like growth factor I in age-related changes in calcium homeostasis in men. J. Clin. Endocrinol. Metab. 85(12):4657-4662.
39 Feher, J. J., C. S. Fullmer and R. H. Wasserman. 1992. Role of facilitated diffusion of calcium by calbindin in intestinal calcium absorption. Am. J. Physiol. 262(2 Pt 1):C517-526.   DOI
40 Halhali, A., L. Diaz, E. Avila, A. C. Ariza, M. Garabedian and F. Larrea. 2007. Decreased fractional urinary calcium excretion and serum 1,25-dihydroxyvitamin D and IGF-I levels in preeclampsia. J. Steroid Biochem. Mol. Biol. 103(3-5):803-806.   DOI   ScienceOn
41 Hammes, G. G. 2000. Thermodynamics and kinetics for the biological sciences. New York: Wiley-Interscience,
42 Heaney, R. P., S. Abrams, B. Dawson-Hughes, A. Looker, R. Marcus, V. Matkovic and C. Weaver. 2000. Peak bone mass. Osteoporos. Int. 11(12):985-1009.