DOI QR코드

DOI QR Code

A Theoretical Modeling for Suggesting Unique Mechanism of Adolescent Calcium Metabolism

  • Lee, Wang-Hee (Department of Biosystems Machinery Engineering, Chungnam National University) ;
  • Cho, Byoung-Kwan (Department of Biosystems Machinery Engineering, Chungnam National University) ;
  • Okos, Martin R. (Department of Agricultural and Biological Engineering, Purdue University)
  • Received : 2013.05.09
  • Accepted : 2013.05.26
  • Published : 2013.06.01

Abstract

Purpose: Modeling has been used for elucidating the mechanism of complex biosystems. In spite of importance and uniqueness of adolescent calcium (Ca) metabolism characterized by a threshold Ca intake, its regulatory mechanism has not been covered and even not proposed. Hence, this study aims at model-based proposing potential mechanisms regulating adolescent Ca metabolism. Methods: Two different hypothetic mechanisms were proposed. The main mechanism is conceived based on Ca-protein binding which induces renal Ca filtration, while additional mechanism assumed that active renal Ca re-absorption regulated Ca metabolism in adolescents. Mathematical models were developed to represent the proposed mechanism and simulated them whether they could produce adolescent Ca profiles in serum and urine. Results: Simulation showed that both mechanisms resulted in the unique behavior of Ca metabolism in adolescents. Based on the simulation insulin-like growth factor-1 (IGF-1) is suggested as a potential regulator because it is related to both growth, a remarkable characteristic of adolescence, and Ca metabolism including absorption and bone accretion. Then, descriptive modeling is employed to conceptualize the hypothesized mechanisms governing adolescent Ca metabolism. Conclusions: This study demonstrated that modeling is a powerful tool for elucidating an unknown mechanism by simulating potential regulatory mechanisms in adolescent Ca metabolism. It is expected that various analytic applications would be plausible in the study of biosystems, particularly with combination of experimental and modeling approaches.

Keywords

References

  1. Besarab, A., A. DeGuzman and J. W. Swanson. 1981. Effect of albumin and free calcium concentrations on calcium binding in vitro. J. Clin. Pathol. 34(12):1361-1367. https://doi.org/10.1136/jcp.34.12.1361
  2. Binnerts, A., G. R. Swart, J. H. Wilson, N. Hoogerbrugge, H. A. Pols, J. C. Birkenhager and S. W. Lamberts. 1992. The effect of growth hormone administration in growth hormone deficient adults on bone, protein, carbohydrate and lipid homeostasis, as well as on body composition. Clin. Endocrinol. (Oxf). 37(1):79-87. https://doi.org/10.1111/j.1365-2265.1992.tb02287.x
  3. Braun, M., B. R. Martin, M. Kern, G. P. McCabe, M. Peacock, Z. Jiang and C. M. Weaver. 2006. Calcium retention in adolescent boys on a range of controlled calcium intakes. Am. J. Clin. Nutr. 84(2):414-418.
  4. Caverzasio, J. and J. P. Bonjour. 1988. Influence of calcium on phosphate transport in cultured kidney epithelium. Am. J. Physiol. 254(2 Pt 2):F217-222.
  5. Caverzasio, J. and J. P. Bonjour. 1993. Growth factors and renal regulation of phosphate transport. Pediatr. Nephrol. (Berlin, Germany). 7(6):802-806. https://doi.org/10.1007/BF01213364
  6. Doty, S. E. and R. C. Seagrave. 2000. Human water, sodium and calcium regulation during space flight and exercise. Acta Astronaut. 46(9):591-604. https://doi.org/10.1016/S0094-5765(00)00020-5
  7. Fatayerji, D., E. B. Mawer and R. Eastell. 2000. The role of insulin-like growth factor I in age-related changes in calcium homeostasis in men. J. Clin. Endocrinol. Metab. 85(12):4657-4662.
  8. Feher, J. J., C. S. Fullmer and R. H. Wasserman. 1992. Role of facilitated diffusion of calcium by calbindin in intestinal calcium absorption. Am. J. Physiol. 262(2 Pt 1):C517-526. https://doi.org/10.1152/ajpcell.1992.262.2.C517
  9. Halhali, A., L. Diaz, E. Avila, A. C. Ariza, M. Garabedian and F. Larrea. 2007. Decreased fractional urinary calcium excretion and serum 1,25-dihydroxyvitamin D and IGF-I levels in preeclampsia. J. Steroid Biochem. Mol. Biol. 103(3-5):803-806. https://doi.org/10.1016/j.jsbmb.2006.12.055
  10. Hammes, G. G. 2000. Thermodynamics and kinetics for the biological sciences. New York: Wiley-Interscience,
  11. Heaney, R. P., S. Abrams, B. Dawson-Hughes, A. Looker, R. Marcus, V. Matkovic and C. Weaver. 2000. Peak bone mass. Osteoporos. Int. 11(12):985-1009.
  12. Hill, K. M., M. Braun, M. Kern, B. R. Martin, J. W. Navalta, D. A. Sedlock, L. McCabe, G. P. McCabe, M. Peacock and C. M. Weaver. 2008. Predictors of calcium retention in adolescent boys. J. Clin. Endocrinol. Metab. 93(12): 4743-4748. https://doi.org/10.1210/jc.2008-0957
  13. Jackman, L. A., S. S. Millane, B. R. Martin, O. B. Wood, G. P. McCabe, M. Peacock and C. M. Weaver. 1997. Calcium retention in relation to calcium intake and postmenarcheal age in adolescent females. Am. J. Clin. Nutr. 66(2):327-333. https://doi.org/10.1093/ajcn/66.2.327
  14. Kaysen, G. A., V. Rathore, G. C. Shearer and T. A. Depner. 1995. Mechanisms of hypoalbuminemia in hemodialysis patients. Kidney Int. 48(2):510-516. https://doi.org/10.1038/ki.1995.321
  15. Komarova, S. V., R. J. Smith, S. J. Dixon, S. M. Sims and L. M. Wahl. 2003. Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling. Bone. 33(2):206-215. https://doi.org/10.1016/S8756-3282(03)00157-1
  16. Krabbe, S., I. Transbol and C. Christiansen. 1982. Bone mineral homeostasis, bone growth and mineralisation during years of pubertal growth: a unifying concept. Arch. Dis. Child. 57(5):359-363. https://doi.org/10.1136/adc.57.5.359
  17. Kreutz, C. and J. Timmer. 2009. Systems biology: experimental design. FEBS J. 276(4):923-942. https://doi.org/10.1111/j.1742-4658.2008.06843.x
  18. Lee, W.-H., M. Wastney, G. Jackson, B. Martin and C. Weaver. 2011. Interpretation of 41Ca data using compartmental modeling in post-menopausal women. Anal Bioanal Chem. 399(4):1613-1622. https://doi.org/10.1007/s00216-010-4454-5
  19. Lee, Y., L. Escamilla-Trevino, R. A. Dixon and E. O. Voit. 2012. Functional analysis of metabolic channeling and regulation in lignin biosynthesis: a computational approach. PLoS Comput. Biol. 8(11):e1002769. https://doi.org/10.1371/journal.pcbi.1002769
  20. Linse, S., B. Jonsson and W. J. Chazin. 1995. The effect of protein concentration on ion binding. Proc. Natl. Acad. Sci. U.S.A. 92(11):4748-4752. https://doi.org/10.1073/pnas.92.11.4748
  21. Lund, U., A. Rippe, D. Venturoli, O. Tenstad, A. Grubb and B. Rippe. 2003. Glomerular filtration rate dependence of sieving of albumin and some neutral proteins in rat kidneys. Am. J. Physiol. 284(6):F1226-1234.
  22. Matkovic, V. 1991. Calcium metabolism and calcium requirements during skeletal modeling and consolidation of bone mass. Am. J. Clin. Nutr. 54(1 Suppl): 245S-260S. https://doi.org/10.1093/ajcn/54.1.245S
  23. Matkovic, V., D. Fontana, C. Tominac, P. Goel and C. H. Chesnut 3rd. 1990. Factors that influence peak bone mass formation: a study of calcium balance and the inheritance of bone mass in adolescent females. Am. J. Clin. Nutr. 52(5):878-888. https://doi.org/10.1093/ajcn/52.5.878
  24. Matkovic, V. and R. P. Heaney. 1992. Calcium balance during human growth: evidence for threshold behavior. Am. J. Clin. Nutr. 55(5):992-996. https://doi.org/10.1093/ajcn/55.5.992
  25. Matkovic, V. and J. Z. Ilich. 1993. Calcium requirements for growth: are current recommendations adequate? Nutr. Rev. 51(6):171-180.
  26. Mauras, N., K. O. O'Brien, S. Welch, A. Rini, K. Helgeson, N. E. Vieira and A. L. Yergey. 2000. Insulin-like growth factor I and growth hormone (GH) treatment in GHdeficient humans: differential effects on protein, glucose, lipid and calcium metabolism. J. Clin. Endocrinol. Metab. 85(4):1686-1694.
  27. Nesbitt, T. and M. K. Drezner. 1993. Insulin-like growth factor-I regulation of renal 25-hydroxyvitamin D-1- hydroxylase activity. Endocrinology. 132(1):133-138. https://doi.org/10.1210/endo.132.1.8419119
  28. Nordin, B. E. 1990. Calcium homeostasis. Clin. Biochem. 23(1):3-10. https://doi.org/10.1016/0009-9120(90)90309-I
  29. Pedersen, K. O. 1972. Protein-bound calcium in human serum. Quantitative examination of binding and its variables by a molecular binding model and clinical chemical implications for measurement of ionized calcium. Scand. J. Clin. Lab. Invest. 30(3):321-329. https://doi.org/10.3109/00365517209084297
  30. Raposo, J. F., L. G. Sobrinho and H. G. Ferreira. 2002. A minimal mathematical model of calcium homeostasis.. J. Clin. Endocrinol. Metab. 87(9):4330-4340. https://doi.org/10.1210/jc.2002-011870
  31. Rippe, B. 2004. What is the role of albumin in proteinuric glomerulopathies? Nephrol. Dial. Transplant. 19(1): 1-5. https://doi.org/10.1093/ndt/gfg390
  32. Rosen, C. J. 2003. Insulin-like growth factor I and calcium balance: evolving concepts of an evolutionary process. Endocrinology. 144(11):4679-4681. https://doi.org/10.1210/en.2003-1038
  33. Saroff, H. A. and M. S. Lewis. 1963. The binding of calcium ions to serum albumin. J. Phys. Chem. 67(6):1211-1216. https://doi.org/10.1021/j100800a011
  34. Smith, J. M. 1981. Chemical engineering kinetics, 3rd ed. New York: McGraw-Hill.
  35. Triffitt, J. T. and M. Owen. 1977. Preliminary studies on the binding of plasma albumin to bone tissue. Calcif. Tissue Res. 23(3):303-305. https://doi.org/10.1007/BF02012801
  36. Tsai, J. A., A. Lagumdzija, A. Stark and H. Kindmark. 2007. Albumin-bound lipids induce free cytoplasmic calcium oscillations in human osteoblast-like cells. Cell Biochem. Funct. 25(3):245-249. https://doi.org/10.1002/cbf.1316
  37. Wastney, M. E., J. Ng, D. Smith, B. R. Martin, M. Peacock and C. M. Weaver. 1996. Differences in calcium kinetics between adolescent girls and young women. Am. J. Physiol. 271(1 Pt 2):R208-216.
  38. Wills, M. R. and M. R. Lewin. 1971. Plasma calcium fractions and the protein-binding of calcium in normal subjects and in patients with hypercalcaemia and hypocalcaemia. J. Clin. Pathol. 24(9):856-866. https://doi.org/10.1136/jcp.24.9.856
  39. Wortsman, J. and R. B. Traycoff. 1980. Biological activity of protein-bound calcium in serum. Am. J. Physiol. 238(2):E104-107.
  40. Wright, N. M., N. Papadea, B. Wentz, B. Hollis, S. Willi and N. H. Bell. 1997. Increased serum 1,25-dihydroxyvitamin D after growth hormone administration is not parathyroid hormone-mediated. Calcif. Tissue Int. 61(2): 101-103. https://doi.org/10.1007/s002239900303
  41. Yakar, S. and C. J. Rosen. 2003. From mouse to man: redefining the role of insulin-like growth factor-I in the acquisition of bone mass. Exp. Biol. Med. (Maywood). 228(3):245-252. https://doi.org/10.1177/153537020322800302
  42. Zeng, H., K. K. Chittur and W. R. Lacefield. 1999. Analysis of bovine serum albumin adsorption on calcium phosphate and titanium surfaces. Biomaterials. 20(4): 377-384. https://doi.org/10.1016/S0142-9612(98)00184-7

Cited by

  1. A novel approach in analyzing agriculture and food systems: Review of modeling and its applications vol.43, pp.2, 2016, https://doi.org/10.7744/kjoas.20160019
  2. A model of calcium homeostasis in the rat vol.311, pp.5, 2016, https://doi.org/10.1152/ajprenal.00230.2016