
INTRODUCTION

1. Overview of nerve growth factor (NGF) and its 

role in pain perception

In the early 1950's, NGF was discovered by Rita Levi-
Montalcini in a tumor tissue [1]. The discovery of NGF 
was considered a landmark achievement in neurobiolo-
gy. Since then, the diverse roles of NGF were determined 
in multiple era including the pain field. NGF belongs 
to a large family of proteins that include, in mammals, 
neurotrophin-3, neurotrophin-4/5 and brain-derived 
neurotrophic factor [2]. NGF is important for the survival, 
growth and differentiation of sympathetic and sensory 

afferent neurons during development and in the modu-
lation of nociception in adulthood [1]. It is expressed in 
neuronal and non-neuronal tissues. In more detail, it is 
widely expressed in the central nervous cells, peripheral 
Schwann cells, glands, endothelial cells, immune cells 
and skeletal muscles [3]. Notably, there is shift in the role 
of NGF from neuronal growth to the regulation of the 
sensitivity of the peripheral nervous system to noxious 
stimuli [4]. NGF has two receptors including the high 
affinity receptor, tropomyosin receptor kinase A (TrkA) 
and the low affinity receptor p75 neurotrophin receptor 
(p75NTR) [5]. Through its interaction with the high-affin-
ity receptor TrkA, NGF suppresses the synthesis of p75. 
This neurotrophic protein is produced as pro-NGF that 
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has more affinity to p75NTR compared to NGF that binds 
with higher affinity to TrkA [5]. TrkA receptor is highly 
expressed in dorsal root ganglion (DRG) neurons during 
embryogenesis and its role declines post-natally [6]. Ac-
cordingly, NGF is a major contributor to pain signaling 
and transmission [2,7]. In this regard, it was found that 
rats develop hyperalgesia when degradation of NGF is 
blocked by matrix metalloproteinases-2 inhibitor through 
a peripheral mechanism [8]. The role of NGF in neuronal 
development and the perception of localized tissue pain 
has been highlighted in multiple studies [2]. Also, inves-
tigators found that increased NGF levels are linked to in-
flammation, persistent pain, injuries, and discomfort [7]. 
To add, multiple studies showed that NGF is a marker for 
the peptidergic nociceptors that express TrkA compared 
to non-peptidergic nociceptors that express glial cell line-
derived neurotrophic factor [9]. Furthermore, several 
lines of evidences implicated the role of NGF in different 
types of pain such as inflammatory, neuropathic, can-
cer, orofacial, musculoskeletal, and low back pain (LBP) 
[10–13]. In fact, earlier reports pointed to the critical role 
of NGF-mediated signaling in the initiation and mainte-
nance of chronic pain [2]. Thus, this review is written to 
shed light on the role of NGF and its signaling in different 
types of pain.

MAIN BODY

1. Signaling pathways of NGF

NGF plays a key role in nociception through several 
mechanisms including the release of inflammatory me-
diators, increase in the activity and availability of many 
nociceptive ion channels and receptors [14]. The binding 
of NGF to TrkA increases the availability of nociceptive 
receptors such as transient receptor potential vanilloid 1 
(TRPV1), transient receptor potential ankyrin 1 (TRPA1), 
N-methyl-D-aspartic acid, and P2X purinoceptor 3 as 
well as nociceptive transmitters such as substance P and 
calcitonin gene-related peptide (CGRP) [15,16]. Thus, 
NGF plays a crucial role in peripheral and central sensiti-
zation. It sensitizes nociceptors directly in the short term 
and/or changes gene expression in the long term [2]. Ear-
lier reports showed that NGF binds to TrkA receptor and 
participates in the initiation and maintenance of noci-
ception through several intracellular signaling pathways, 
including mitogen-activated protein kinases (MAPKs)/
extracellular signal-regulated kinases and phosphoinosit-
ide-3-kinase(PI3K) [14]. Furthermore, NGF increases 

the release of serotonin, histamine, prostaglandin E2, 
and NGF itself, that collectively binds to their receptors 
on the peripheral terminals of nociceptors [17]. Also, it 
sets off a cascade of events that cause nociceptive pain. 
Furthermore, TrkA binds NGF which is then retrogradely 
delivered to the cell bodies of neurons. Within these cell 
bodies, it regulates the expression of TRPV1, bradykinin 
receptors, voltage-gated sodium channels, acid sens-
ing ion channel 2/3, and other receptors [18]. The no-
ciceptive receptors on the surface of these cells that are 
involved in nociception trigger peripheral sensitization 
and increase pain perception [19]. Meanwhile, central 
sensitization is produced by changes in gene expression 
induced by NGF-TrkA signaling [2]. In conclusion, NGF 
plays a key role in pain perception by regulating the ex-
pression of genes related to pain, controlling the activity 
of key channels/receptors in pain and increasing the pro-
inflammatory mediators (Fig. 1).

2. Types of pain associated with NGF

1) Musculoskeletal pain

(1) Osteoarthritis (OA) pain

OA is an age-related chronic joint disease that leads to 
cartilage destruction caused by several factors includ-
ing inflammation [20]. Inflammation is correlated to the 
role of NGF in increasing the sensitivity of nociceptive 
neurons in the area, thus regulating the production of 
pain molecules centrally and peripherally [10,11]. In 
more detail, it is well-known that pro-NGF controls both 
inflammation and apoptosis [21]. Further, neuropep-
tides, neurotransmitters, and immune-active cytokines 
are all produced due to NGF release and inflammation 
[11]. Also, the innate and adaptive immune responses are 
directly impacted by NGF, since it interacts with several 
cells that are involved in the immunological response, 
such as macrophages, lymphocytes, and mast cells [3]. 
Depending on the presence or absence of its receptors, 
NGF may promote or reduce inflammation. Accordingly, 
it is considered an endogenous molecule that serves 
two separate purposes initiating pathways that regulate 
inflammation/restrict tissue damage and stimulating 
immune responses. NGF has a role in the treatment of 
chronic inflammatory illnesses as it increases the pain 
that is associated with neurogenic inflammation of tissues 
[18]. In this regard, several lines of evidences highlighted 
the key roles of NGF in OA albeit controversy in its role 
as a pro-inflammatory [22] or anti-inflammatory media-
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tor [23]. The following paragraphs are details about the 
involvement of NGF in inflammatory pain. For instance, 
it was found that NGF receptors are expressed by joint 
cells [24]. Also, a large body of evidences showed that the 
lack of NGF leads to the loss of sympathetic and sensory 
neurons similar to TrkA-knocking down in animals [6,25]. 
People with inflammatory or degenerative rheumatic 
illnesses, including rheumatoid arthritis, OA, and spon-
dyloarthritis, have elevated levels of NGF in their synovial 
fluid. Further, a meta-analysis of thirteen placebo-con-
trolled trials examining OA of the hip or knee was carried 
out by Schnitzer and Marks, 2015 [26]. The researchers 
discovered that blocking NGF significantly reduced pain 
when compared to a placebo. In a mouse model of me-
dial meniscus destabilization (MMD) associated with OA, 
the effects of NGF and its soluble receptor, TrkAd5, on 
pain rating were examined. The study demonstrated that 
TrkAd5 effectively decreased discomfort in mice with OA 
[27]. In 2015, it was found that canine-specific anti-NGF 
mAb could cure degenerative joint disease in dogs [28,29].

Investigators tested the efficacy of several intra-articu-
lar and intraperitoneal injection of an anti-NGF into the 
knees of rats and reported the effectiveness in reversing 
OA-induced pain [30]. Also, Dakin et al. [31] revealed 
that blocking NGF reduced pain behavior in two OA rat 
models. In addition, the effects of tanezumab on weight-
bearing and cartilage degradation were shown in a study 
using the rat medial meniscal tear model whereby rats 
with meniscal injury had a less aberrant gait after re-
ceiving tanezumab treatment, regardless of dosage and 

increase in the incidence of subchondral bone sclerosis 
and cartilage degradation [32]. According to Xu et al. [33], 
it was revealed that anti-NGF mAb reduced the severity 
and discomfort of OA but increased cartilage destruction 
compared to the control group. This effect was particu-
larly seen in the early stages of the disease [33]. After joint 
or orthopaedic surgery, Majuta et al. [34] showed that 
using anti-NGF in the knee enhanced limb performance 
in a mouse model and reported that NGF has two distinct 
roles in development and maturity [34].

After injecting NGF antibody in the knee, it was re-
vealed that there was a shift in the levels of CGRP in 
DRGs, a matter that causes interference with walking 
patterns [34]. Furthermore, a new NGF vaccination was 
effective in reducing the spontaneous pain behaviour in 
mice with surgically induced OA. Overall, these findings 
support the idea that inhibiting NGF signaling might be 
beneficial in alleviating chronic pain, particularly in OA 
patients [35]. Additionally, previous studies showed that 
NGF decelerated chondrocyte differentiation and im-
proved ligament healing [36,37]. In a study conducted on 
chondrocytes, the authors reported that the mechanical 
loading of cartilage accompanied with an increase of vis-
fatin/nicotinamide phosphoribosyltransferase and inter-
leukin 1β (IL-1β) aggravated OA pain though the stimu-
lation of NGF expression and release by these cells [38]. 
Also, it was reported that there was a decrease in patient's 
OA symptoms including pain when anti-NGF-treatment 
was used [39].

Lane and Corr [40] discussed the efficacy of NGF inhib-
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itors in reducing musculoskeletal pain. Additionally, Wise 
et al. [13] reviewed the clinical studies evaluating NGF 
inhibitors' efficacy, such as tanezumab, in chronic pain 
states like OA pain and discussed the significant pain re-
lief observed in clinical trials and the associated risks of 
rapidly progressive OA. Meng et al. [41] reviewed the effi-
cacy of NGF inhibitors in the treatment of OA, while Pal-
lav et al. [42] published that anti-NGF mAbs (tanezumab, 
fasinumab, and fulranumab) caused a significant de-
crease in pain and physical function scores compared to 
the control groups. These studies collectively underscore 
the therapeutic potential of NGF inhibitors in managing 
chronic musculoskeletal pain.

(2) LBP

LBP is a type of pain that imposes huge burdens in the 
society. In 2007, the US estimated that 100–200 billion 
dollars are lost every year due to loss of productivity of 
employees or absence from work caused by LBP. Thus, 
various studies were conducted to find treatments for 
LBP. Nonradicular LBP is one kind of musculoskeletal 
pain that tanezumab showed promise in treatment. Anti-
NGF showed low to moderate effects in alleviating LBP 
in patients [43]. In this regard, Markman et al. [44] dis-
cussed the safety and efficacy of tanezumab in treating 
nonradicular LBP that persists after medication. Another 
meta-analysis study revealed that the use of NGF agents 
improved the symptoms of LBP patients [45]. Researchers 
compared 5 or 10 mg of tanezumab administered subcu-
taneously every 8 weeks against 100 to 300 mg of tramad-
ol taken orally once in a day. In contrast to tramadol, tan-
ezumab at a dosage of 10 mg reduced the severity of LBP 
after 16 weeks. Complete joint replacement surgery was 
necessary for seven patients (1.4% of the total) in the 10 
mg group compared to other groups. Tanezumab seems 
to be effective for chronic LBP [46]. In a study conducted 
in patients with chronic LBP, it was reported that tan-
ezumab provided more improvement in pain and global 
assessment scores compared to the groups that received 
a placebo and naproxen [47]. On the other hand, other 
studies demonstrated the other side of NGF effects. In 
these studies, NGF was used to create a model of LBP in 
rats associated with mechanical somatosensory changes 
[48].

2) Cancer pain

Over 60 years ago, during a transplantation experiment 
with a malignant mouse sarcoma, NGF was first discov-

ered by Levi-Montalcini indicating the role of NGF in 
cancer. NGF alone cannot promote the growth of neo-
plasms cells. Indeed, it plays a substantial role in the 
development of neoplasms when expressed in conjunc-
tion with substances that promote neoplasms. Several 
lines of evidence indicate the key role of NGF in cancer. 
For instance, sortilin, a membrane receptor, has been as-
sociated with carcinogenesis by acting as a co-receptor 
for proNGF in cooperation with p75NTR to promote 
cancer cell invasion [10]. Further, neuropilin-1, found in 
many nociceptors, is considered a key player in the TrkA-
mediated pain signaling cascade [49]. In the pancreatic 
ductal adenocarcinoma model, it was found that there is 
a reduction in TRPA1 transcription after treatment with 
NGF inhibitor [50].

The role of TrkA and/or p75NTR receptors in enhanc-
ing pro-survival signaling in tumors vary [51]. In breast 
cancer, NGF plays an important role by promoting cell 
proliferation via TrkA and cell survival via p75NTR [51]. 
Furthermore, earlier studies revealed that the activation 
of p75NTR enhances the ability of breast cancer cells 
to withstand chemotherapy-induced cell death [52]. 
Stimulating the Ras (rat sarcoma) pathways, which are 
mediated by TrkA, allows cells to survive and nerve fibers 
to proliferate. Also, this pathway was implicated in the 
TrkA-activated PI3Ks pathway leading to proliferation, 
invasion, and metastasis [21]. In prostate cells; it was 
found that p75NTR promotes cell death and inhibits tu-
mor growth in normal prostate cells [21]. Further, there is 
strong evidence that NGF affects liver cancer progression 
and metastasis [53]. NGF modulates signaling pathways 
linked to cell migration, cytoskeleton structure, and 
liver cancer cell polarity [53]. At high NGF levels, cells 
are shielded from planned cell death and detachment-
induced cell death, and undergo cellular metamorphosis, 
which is characterized by increased mobility and sus-
ceptibility to directional and structural alterations [53]. 
Furthermore, the use of anti-NGF mAbs has been ex-
plored in many preclinical trials as a potential remedy for 
cancer-related discomfort [54]. Scientists showed that, in 
contrast to conventional morphine treatment, a new NGF 
sequestering antibody significantly reduced pain-related 
behaviors in a bone cancer mice model [55]. It was re-
vealed that anti-NGF treatment considerably mitigated 
functional connectivity alterations and reduced cancer 
[56]. Another study highlighted the connections between 
oral cancer pain, proliferation, cachexia, and NGF. Also, 
it was shown that cancer pain reduced when anti-NGF 
medicine was administered at the early and late stages of 
the disease, according to Jimenez-Andrade et al. [56]. In a 
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mouse model of cancer-induced bone pain, Guedon et al. 
[57] investigated the effects of anti-NGF and found that 
anti-NGF mAbs reduced skeletal pain-related behaviors 
and affected cutaneous hypersensitivity.

3) Neuropathic pain

According to the International Association for the Study 
of Pain: neuropathic pain is "pain caused by a lesion or 
disease of the somatosensory system" regardless of the 
cause [58]. The number of people suffering from neuro-
pathic pain reached two million people according to US 
estimates [59]. In animal models of neuropathic pain, 
allodynia and thermal hyperalgesia were reduced by 
the intrathecal administration of NGF [60]. Meanwhile, 
in human clinical trials of peripheral neuropathic pain, 
NGF showed positive effects on neuropathic pain and 
pain sensitivity in human immunodeficiency virus (HIV)-
associated sensory neuropathy [61]. Furthermore, NGF 
was effective in preventing the progression of peripheral 
neuropathies that are associated with HIV or diabetes 
[62]. Anti-NGF mAb therapy has been the subject of sev-
eral preclinical investigations for the treatment of neuro-
pathic pain including cancer-induced neuropathic pain. 
Research by Dai et al. [63] showed that inhibiting NGF re-
duced the activities of p65 and MAPK and alleviated neu-
ropathic pain associated with chronic constriction injury. 
Additionally, local application of anti-NGF decreased the 
severity of heat-induced hypersensitivity in rats with tri-
geminal neuropathic pain, according to a study conduct-
ed by Dos Reis et al. [64]. As shown by Sainoh et al. [65], 
anti-NGF antibodies have the potential to be a useful tool 
in the management of neuropathic cancer pain.

4) Orofacial pain

Several lines of evidences show the role of NGF in orofa-
cial pain. Jasim and co-workers conducted an examina-
tion to assess the levels of NGF in the saliva and plasma 
of 39 patients with chronic temporomandibular disorder 
(TMD)-myalgia and 39 pain-free individuals and found 
that the salivary levels of NGF decreased in TMD-myal-
gia patients [66]. Also, injecting NGF into the masseter 
muscle increased mechanical sensitization in women 
more than men indicating that NGF-induced muscle pain 
is sex-related [67]. Patients with multiple extractions of 
teeth perceived an increase in pain, particularly mechan-
ical hyperalgesia, which might be prevented by using 
antibodies that reduce NGF activity. Furthermore, it was 
found that the trigeminal ganglia (TG) and periodontal 

tissues had elevation in the levels of NGF expression and 
that the application of mechanical stimuli to periodontal 
fibroblasts increased NGF production [68]. Thus, NGF-
based gene therapy was proposed as a mediator for the 
mechanical hyperalgesia that results from tooth move-
ment [69].

According to this study, control volunteers reported 
significant changes in the excitability of the corticomotor, 
while NGF (injected to the masseter muscle of individu-
als suffering from teeth grinding) did not demonstrate 
any changes in the central regulation of motor pathways 
due to NGF-induced sensitization combined with a mo-
tor training assignment [70]. According to Mai et al, NGF 
is involved in orofacial pain via regulating TRPV1 expres-
sion at the nociceptor level [70]. In addition, NGF an-
tagonists reversed complete Freund’s adjuvant-induced 
increase in the number of TRPV1-positive neurons that 
innervate the lower lip [50]. Also, it was found that block-
ing NGF reduced TRPA1 expression in an oral cancer 
pain model suggesting that NGF may contribute to the 
development of hyperalgesia in the orofacial region via 
TRPA1 activation [71].

5) Visceral pain

Mixed results were reported for the effects of NGF on 
visceral pain. In patients suffering from diarrhea-pre-
dominant irritable bowel syndrome, it was found that 
NGF interacts with sensory nerve fibers and mast cells in 
mediating visceral hypersensitivity [72]. Also, NGF was 
found in high concentrations in the urine of patients suf-
fering from visceral dysfunction [73]. Also, in a model of 
neonatal colon inflammation, NGF was correlated with 
gastric hypersensitivity and its levels increased in gastric 
fundus [74]. Attenuation of NGF with gastrula mAbs, es-
pecially when humanized, is being examined in clinical 
trials as an analgesic option for a variety of visceral pain 
conditions such as diabetes and post-surgery [75,76]. In 
bioelectrical rehabilitation, the results suggested that mi-
croneedling could also up-regulate the expression of NGF 
genes, hence playing a significant role in the accelerated 
process of nerve regeneration in addition to restoring 
the normal functioning of the peripheral nerves [77]. Ac-
cording to Liang et al. [78], the researchers explored the 
involvement of electroacupuncture in visceral pain man-
agement as well as NGF producing nanocomponents in 
colorectal pain and revealed that the nanocomponents 
displayed the capability to relieve visceral pain by in-
creasing NGF expression.
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3. Therapeutic implications of NGF in pain 

management

Elevated levels of NGF have been associated with vari-
ous pain states making it a target for pain management 
[3,5]. Accumulating pieces of evidence have shown that 
the available drugs (i.e., opiates and non-steroidal anti-
inflammatory drugs [NSAIDs]) that are used for the treat-
ment of chronic pain leads to long-term side effects such 
as cardiac, gastrointestinal, or renal adverse effects, sug-
gesting the need to look for other alternatives [5,16]. Anti-
bodies or neutralizing medicines that target NGF signal-
ing and its ability to modulate pain in the long term, have 
been studied in animal models. Under the request to 
license the subcutaneous injection of 2.5 mg tanezumab, 
the Food and Drug Administration (FDA) approved its 
use on March 2, 2020 [79,80]. NGF inhibitors are safer and 
more cost-effective than joint replacement surgery, the 
conventional alternative treatment for knee and hip OA 
[79,80]. Multiple approaches were established for target-
ing NGF to relive pain such as preventing NGF binding, 
activation or inhibiting of TrkA binding/signaling and 
sequestration of free NGF [2,5]. NGF inhibitors were used 
as analgesics in chronic pain conditions such as chronic 
LBP and OA with better outcomes compared to NSAIDs 
[13]. Also worth mentioning is the importance of pointing 
to the different signaling of NGF in the acute and chronic 
phases of pain. For example, it was revealed that there is 
an increase in p75NTR-mRNA level in the chronic phase 
of the experimental model of autoimmune encephalo-
myelitis leading to an elevation in the p75NTR to TrkA at 
the chronic phase of this model [81]. Also, the expression 
of NGF protein increased slightly during the acute phase 
whereas the expression of TrkA in the brains of mice was 
stable during this phase [81]. Additionally, several reports 
showed that NGF drives local neuronal sprouting and 
increases the excitability of the nervous system (promotes 
sensitization of neurons) which is a key process in many 
conditions of chronic pain [2]. These findings indicate 
the importance of tailoring drugs that are used in the 
acute phase differently than the ones used for the chronic 
phase. Hirose et al. [12] discussed the development of 
analgesics targeting NGF/TrkA signaling, noting that this 
approach can be effective for treating intractable pain 
without the adverse effects that are commonly associated 
with traditional analgesic drugs. Also, several phase 2/3 
studies have been done that target NGF and TrkA inhibi-
tors. Furthermore, humanized anti-NGF mAbs (i.e., tan-
ezumab, fulranumab, and fasinumab) were used in phase 
III trials in OA [82]. Additionally, the use of anti-NGF 

antibodies in patients suffering from knee OA improved 
stiffness, physical function, and patient global assessment 
[68]. Chang et al. [2] reported the effectiveness of NGF in-
hibitors for neuropathic and other types of pain, such as 
cancer and visceral pain. Peach et al. [49] found that the 
co-receptor for NGF is responsible for the transfer of sig-
nals to TrkA receptors, and that neuropilin 1 antagonism 
in nociceptors is a new approach for NGF-mediated pain. 
Also, another study demonstrated that development of 
abnormal somatosensory behavior was prevented by 
anti-NGF, suggesting its beneficial effect in the treatment 
for central pain [83]. Another important aspect in design-
ing valuable drugs is to understand the dual roles of NGF 
as a pro-inflammatory and anti-inflammatory mediator 
which is dependent on the type and expression of NGF 
receptors, cellular context, and the stage of the inflam-
matory process. Understating these roles is crucial to 
tailor the inhibition of NGF in the right place and to avoid 
inhibiting NGF when it has an anti-inflammatory effect. 
Providing more detail, El-Hashim et al. [84] pointed to 
the role of NGF (when administered by inhalation or in-
tracerebroventricularly) in cough and airway obstruction 
in guinea pigs by increasing the phosphorylation of TrkA 
receptors in the bronchi. On the other hand, it was shown 
that the expression of anti-inflammatory mediators such 
as IL-10 can be induced by NGF [85].

4. Adverse effects of anti-NGF treatment

Despite the promising analgesic efficacy of anti-NGF 
mAbs, their development has been complicated by safety 
concerns, particularly regarding their long-term use. 
These concerns include the possibility of aggravating 
peripheral neuropathies and joint issues. Also, the use of 
anti-NGF mAbs (mainly tanezumab) in the treatment of 
OA was correlated with some side effects in clinical trials 
such as rapidly progressive OA of the knee and hip joints 
[13] or neurological effects [86]. Also, Bernard [87] used 
NGF vaccine in a mouse model of OA (destabilization of 
the medial meniscus) and reported the effectiveness of 
this vaccine in pain reduction.

Although the evidence of the efficacy for NGF inhibi-
tors in knee OA is robust, the incidence of adverse effects 
increases with higher doses, longer exposure, and con-
comitant use of NSAIDs. In patients with musculoskeletal 
pain, according to Katz et al. [46], the intravenous admin-
istration of 200 μg/kg tanezumab plus an oral placebo 
twice a day showed analgesic effects with some adverse 
effects. Lane and Corr [40] discussed the efficacy of NGF 
inhibitors in reducing musculoskeletal pain and reported 



Sahar Jaffal and Raida Khalil

https://doi.org/10.3344/kjp.24235294

some adverse effects associated with the use of these in-
hibitors, such as accelerated arthropathy. Thus, the FDA 
halted all anti-NGF trials due to reports of rare cases of 
rapidly progressive joint degeneration that necessitated 
joint replacement, especially in those co-treated with 
NSAIDs [38].

5. Future research directions

As discussed in this review, the use of anti-NGF therapy 
showed promising effects in alleviating different types of 
pain. At the same time, there are adverse effects for using 
this therapy. More research is needed to find out routes 
for applying anti-NGF directly to the site of pain and to 
decrease its systemic side effects. Nanoparticles can be 
useful in this regard. To add, combinational therapy using 
anti-NGF therapy with other drugs can be good area for 
future research. Also, there is a need to explore the effi-
cacy of anti-NGF therapy in the long term. Additionally, it 
would be very beneficial if scientists could design and tai-
lor personalized NGF therapies based on the proteomics, 
genetic, and metabolomics analysis of patients. Finally, 
more research is needed to elucidate the differential 
mechanisms of NGF in acute and chronic pain in order to 
tailor drugs specifically for each case.

CONCLUSIONS

Collectively, all of the aforementioned studies point to 
the effectiveness and the mechanisms of NGF in alleviat-
ing different types of pain. Future work is needed to find 
the adverse effects of NFG that appear when combining 
NGF and other drugs. Filling this gap can be effective in 
mitigating these problems.
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