• Title/Summary/Keyword: Positive operator

Search Result 208, Processing Time 0.026 seconds

BEREZIN NUMBER INEQUALITIES VIA YOUNG INEQUALITY

  • Basaran, Hamdullah;Gurdal, Mehmet
    • Honam Mathematical Journal
    • /
    • v.43 no.3
    • /
    • pp.523-537
    • /
    • 2021
  • In this paper, we obtain some new inequalities for the Berezin number of operators on reproducing kernel Hilbert spaces by using the Hölder-McCarthy operator inequality. Also, we give refine generalized inequalities involving powers of the Berezin number for sums and products of operators on the reproducing kernel Hilbert spaces.

GENERALIZING HARDY TYPE INEQUALITIES VIA k-RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL OPERATORS INVOLVING TWO ORDERS

  • Benaissa, Bouharket
    • Honam Mathematical Journal
    • /
    • v.44 no.2
    • /
    • pp.271-280
    • /
    • 2022
  • In this study, We have applied the right operator k-Riemann-Liouville is involving two orders α and β with a positive parameter p > 0, further, the left operator k-Riemann-Liouville is used with the negative parameter p < 0 to introduce a new version related to Hardy-type inequalities. These inequalities are given and reversed for the cases 0 < p < 1 and p < 0. We then improved and generalized various consequences in the framework of Hardy-type fractional integral inequalities.

WEYL'S THEOREM, TENSOR PRODUCT, FUGLEDE-PUTNAM THEOREM AND CONTINUITY SPECTRUM FOR k-QUASI CLASS An* OPERATO

  • Hoxha, Ilmi;Braha, Naim Latif
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.1089-1104
    • /
    • 2014
  • An operator $T{\in}L(H)$, is said to belong to k-quasi class $A_n^*$ operator if $$T^{*k}({\mid}T^{n+1}{\mid}^{\frac{2}{n+1}}-{\mid}T^*{\mid}^2)T^k{\geq}O$$ for some positive integer n and some positive integer k. First, we will see some properties of this class of operators and prove Weyl's theorem for algebraically k-quasi class $A_n^*$. Second, we consider the tensor product for k-quasi class $A_n^*$, giving a necessary and sufficient condition for $T{\otimes}S$ to be a k-quasi class $A_n^*$, when T and S are both non-zero operators. Then, the existence of a nontrivial hyperinvariant subspace of k-quasi class $A_n^*$ operator will be shown, and it will also be shown that if X is a Hilbert-Schmidt operator, A and $(B^*)^{-1}$ are k-quasi class $A_n^*$ operators such that AX = XB, then $A^*X=XB^*$. Finally, we will prove the spectrum continuity of this class of operators.

SPECTRAL ANALYSIS OF THE INTEGRAL OPERATOR ARISING FROM THE BEAM DEFLECTION PROBLEM ON ELASTIC FOUNDATION I: POSITIVENESS AND CONTRACTIVENESS

  • Choi, Sung-Woo
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.27-47
    • /
    • 2012
  • It has become apparent from the recent work by Choi et al. [3] on the nonlinear beam deflection problem, that analysis of the integral operator $\mathcal{K}$ arising from the beam deflection equation on linear elastic foundation is important. Motivated by this observation, we perform investigations on the eigenstructure of the linear integral operator $\mathcal{K}_l$ which is a restriction of $\mathcal{K}$ on the finite interval [$-l,l$]. We derive a linear fourth-order boundary value problem which is a necessary and sufficient condition for being an eigenfunction of $\mathcal{K}_l$. Using this equivalent condition, we show that all the nontrivial eigenvalues of $\mathcal{K}l$ are in the interval (0, 1/$k$), where $k$ is the spring constant of the given elastic foundation. This implies that, as a linear operator from $L^2[-l,l]$ to $L^2[-l,l]$, $\mathcal{K}_l$ is positive and contractive in dimension-free context.

SPECTRAL PROPERTIES OF k-QUASI-2-ISOMETRIC OPERATORS

  • SHEN, JUNKI;ZUO, FEI
    • The Pure and Applied Mathematics
    • /
    • v.22 no.3
    • /
    • pp.275-283
    • /
    • 2015
  • Let T be a bounded linear operator on a complex Hilbert space H. For a positive integer k, an operator T is said to be a k-quasi-2-isometric operator if T∗k(T∗2T2 − 2TT + I)Tk = 0, which is a generalization of 2-isometric operator. In this paper, we consider basic structural properties of k-quasi-2-isometric operators. Moreover, we give some examples of k-quasi-2-isometric operators. Finally, we prove that generalized Weyl’s theorem holds for polynomially k-quasi-2-isometric operators.

THE GENERALIZED NORMAL STATE SPACE AND UNITAL NORMAL COMPLETELY POSITIVE MAP

  • Sa Ge Lee
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.237-257
    • /
    • 1998
  • By introducing the notion of a generalized normal state space, we give a necessary and sufficient condition for that there exists a unital normal completely map from a von Neumann algebra into another, in terms of their generalized normal state spaces.

  • PDF

S-SHAPED CONNECTED COMPONENT FOR A NONLINEAR DIRICHLET PROBLEM INVOLVING MEAN CURVATURE OPERATOR IN ONE-DIMENSION MINKOWSKI SPACE

  • Ma, Ruyun;Xu, Man
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1891-1908
    • /
    • 2018
  • In this paper, we investigate the existence of an S-shaped connected component in the set of positive solutions of the Dirichlet problem of the one-dimension Minkowski-curvature equation $$\{\(\frac{u^{\prime}}{\sqrt{1-u^{{\prime}2}}}\)^{\prime}+{\lambda}a(x)f(u)=0,\;x{\in}(0,1),\\u(0)=u(1)=0$$, where ${\lambda}$ is a positive parameter, $f{\in}C[0,{\infty})$, $a{\in}C[0,1]$. The proofs of main results are based upon the bifurcation techniques.

A KOROVKIN TYPE APPROXIMATION THEOREM FOR DOUBLE SEQUENCES OF POSITIVE LINEAR OPERATORS OF TWO VARIABLES IN A-STATISTICAL SENSE

  • Demirci, Kamil;Dirik, Fadime
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.825-837
    • /
    • 2010
  • In this paper, we obtain a Korovkin type approximation theorem for double sequences of positive linear operators of two variables from $H_w$ (K) to C (K) via A-statistical convergence. Also, we construct an example such that our new approximation result works but its classical case does not work. Furthermore, we study the rates of A-statistical convergence by means of the modulus of continuity.