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WEYL’S THEOREM, TENSOR PRODUCT,

FUGLEDE-PUTNAM THEOREM AND CONTINUITY

SPECTRUM FOR k-QUASI CLASS A∗

n
OPERATORS

Ilmi Hoxha and Naim Latif Braha

Abstract. An operator T ∈ L(H), is said to belong to k-quasi class A∗
n

operator if

T ∗k
(

|Tn+1|
2

n+1 − |T ∗|2
)

T k ≥ O

for some positive integer n and some positive integer k.
First, we will see some properties of this class of operators and prove

Weyl’s theorem for algebraically k-quasi class A∗
n. Second, we consider

the tensor product for k-quasi class A∗
n, giving a necessary and sufficient

condition for T ⊗ S to be a k-quasi class A∗
n, when T and S are both

non-zero operators. Then, the existence of a nontrivial hyperinvariant
subspace of k-quasi class A∗

n operator will be shown, and it will also be

shown that if X is a Hilbert-Schmidt operator, A and (B∗)−1 are k-quasi
class A∗

n operators such that AX = XB, then A∗X = XB∗. Finally, we
will prove the spectrum continuity of this class of operators.

1. Introduction

Throughout this paper, let H and K be infinite dimensional separable com-
plex Hilbert spaces with inner product 〈·, ·〉. We denote by L(H,K) the set of
all bounded operators from H into K. To simplify, we put L(H) := L(H,H).
For T ∈ L(H), we denote by kerT the null space and by T (H) the range of T .
The null operator and the identity on H will be denoted by O and I, respec-
tively. If T is an operator, then T ∗ is its adjoint, and ‖T ‖ = ‖T ∗‖. We shall
denote the set of all complex numbers by C, the set of all non-negative integers
by N and the complex conjugate of a complex number λ by λ. The closure
of a set M will be denoted by M and we shall henceforth shorten T − λI to
T − λ. An operator T ∈ L(H), is a positive operator, T ≥ O, if 〈Tx, x〉 ≥ 0
for all x ∈ H. We write σ(T ), σp(T ), σs(T ) and σa(T ) for the spectrum, point
spectrum, surjective spectrum and approximate point spectrum, respectively.
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Sets of isolated points and accumulation points of σ(T ) are denoted by isoσ(T )
and accσ(T ), respectively. We write r(T ) for the spectral radius. It is well
known that r(T ) ≤ ‖T ‖. The operator T is called normaloid if r(T ) = ‖T ‖.

For an operator T ∈ L(H), as usual, |T | = (T ∗T )
1
2 . An operator T is

said to be normal operator if T ∗T = TT ∗ and T is said to be hyponormal, if
|T |2 ≥ |T ∗|2. The operator T is said to be a p-hyponormal operator if and
only if (T ∗T )p ≥ (TT ∗)p for a positive number p [3]. The operator T is said to
be (p, k)-quasihyponormal operator if T ∗k((T ∗T )p − (TT ∗)p)T k ≥ O for some
positive integer k and p > 0. An operator T ∈ L(H), is said to be paranormal
[16], if ‖Tx‖2 ≤ ‖T 2x‖ for any unit vector x in H. Further, T is said to be
∗-paranormal [5], if ‖T ∗x‖2 ≤ ‖T 2x‖ for any unit vector x in H . T is said to
be n-paranormal operator if ‖Tx‖n+1 ≤ ‖T n+1x‖‖x‖n for all x ∈ H, and T is
said to be n-∗-paranormal operator if ‖T ∗x‖n+1 ≤ ‖T n+1x‖‖x‖n for all x ∈ H.
An operator T is said to be (n, k)-quasi-∗-paranormal [43] if

‖T ∗T kx‖ ≤ ‖T 1+n+kx‖
1

1+n ‖T kx‖
n

n+1 for all x ∈ H.

T. Furuta, M. Ito and T. Yamazaki [18] introduced a very interesting class
of bounded linear Hilbert space operators: class A defined by |T 2| ≥ |T |2,
and they showed that the class A is a subclass of paranormal operators. An
operator is said to be quasi class (A, k) operator if T ∗k(|T 2| − |T |2)T k ≥ O for
a positive integer k. B. P. Duggal, I. H. Jeon, and I. H. Kim [13], introduced
∗-class A operator. An operator T ∈ L(H) is said to be a ∗-class A operator,
if |T 2| ≥ |T ∗|2. A ∗-class A is a generalization of a hyponormal operator,
[13, Theorem 1.2], and ∗-class A is a subclass of the class of ∗-paranormal
operators, [13, Theorem 1.3]. We denote the set of ∗-classA by A∗. An operator
T ∈ L(H), is said to be a quasi-∗-class A operator, if T ∗|T 2|T ≥ T ∗|T ∗|2T,
[39]. We denote the set of quasi-∗-class A by Q(A∗). In [42], is defined class An

operator: an operator T ∈ L(H), is said to be An operator if |T n+1|
2

n+1 ≥ |T |2

for some positive integer n. An operator T ∈ L(H), is said to be A∗
n operator

if |T n+1|
2

n+1 ≥ |T ∗|2 for some positive integer n. If T ∈ A∗
n, then T is n-∗-

paranormal operator, thus T is normaloid [36]. An operator T ∈ L(H), is said
to belong to k-quasi class A∗

n operator if

T ∗k
(

|T n+1|
2

n+1 − |T ∗|2
)

T k ≥ 0

for some positive integer n and some positive integer k [23].
If n = 1 and k = 1, then k-quasi class A∗

n operators coincide with Q(A∗)
operators.

Since S ≥ O implies T ∗ST ≥ O, then: If T belongs to class A∗
n for some

positive integer n ≥ 1, then T belongs k-quasi class A∗
n for every positive

integer k.
Obviously,

1-quasi class A∗
n ⊆ 2-quasi class A∗

n ⊆ 3-quasi class A∗
n ⊆ · · · .
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We say that T ∈ L(H) is an algebraically k-quasi class A∗
n operator if there

exists a nonconstant complex polynomial p such that p(T ) is a k-quasi class
A∗

n operator. We have the following implications:

k-quasi class A∗
n ⇒ algebraically k-quasi class A∗

n

Lemma 1.1 ([9, Holder-McCarthy inequality]). Let T be a positive operator.

Then the following inequalities hold for all x ∈ H :

(1) 〈T rx, x〉 ≤ 〈Tx, x〉r ‖x‖2(1−r) for 0 < r < 1,
(2) 〈T rx, x〉 ≥ 〈Tx, x〉r ‖x‖2(1−r) for r ≥ 1.

2. Weyl’s type theorems for k-quasi class A∗

n
operator

Theorem 2.1 ([23]). Let T ∈ L(H) be a k-quasi class A∗
n operator, T k does

not have a dense range, and let T have the following representation

T =

(

A B
O C

)

on H = T k(H)⊕ kerT ∗k.

Then A is a class A∗
n on T k(H), Ck = O and σ(T ) = σ(A) ∪ {0}.

A subspace M of space H is said to be nontrivial invariant (alternatively, T -
invariant) under T, if {0} 6= M 6= H and T (M) ⊆ M. A closed subspaceM ⊆ H
is said to be a nontrivial hyperinvariant subspace for T, if {0} 6= M 6= H and
is invariant under every operator S ∈ L(H) which fulfills TS = ST.

Theorem 2.2 ([23]). If T is a k-quasi class A∗
n and M is a closed T -invariant

subspace, then the restriction T|M is also a k-quasi class A∗
n operator.

Corollary 2.3. If T ∈ L(H), is a k-quasi class A∗
n and the restriction A on

T k(H) is invertible, then T is similar to a direct sum of a class A∗
n and a

nilpotent operator.

Proof. Suppose that T = ( A B
O C ) on H = T k(H)⊕ kerT ∗k. By Theorem 2.1, A

is a class A∗
n and C is a nilpotent operator with nilpotency k. Since 0 6∈ σ(A)

by assumption, we have σ(A) ∩ σ(C) = ∅. Hence by Rosenblum’s Corollary
[35], there exists an operator S for which AS − SC = B. Therefore

T =

(

A B
O C

)

=

(

I S
O I

)−1 (
A O
O C

)(

I S
O I

)

which completes the proof. �

Lemma 2.4. Let T ∈ L(H,K) operator, defined as

T =

(

A B
O C

)

.

If A belongs to class A∗
n operator, surjective and Ck = O, then T is similar

to (n, k)-quasi-∗-paranormal operator.
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Proof. Since A is surjective and Ck = O we have σs(A) ∩ σa(C) = ∅. Hence
by [26, Theorem 3.5.1], there exists an operator S for which AS − SC = B.
Therefore

(

I S
O I

)(

A B
O C

)

=

(

A O
O C

)(

I S
O I

)

,

so T is similar to R = (A O
O C ) .

Let x = x1 + x2 ∈ H ⊕K. Since A is a class A∗
n, then A is n-∗-paranormal

operator, and since Ck = O we have

‖R∗(Rkx)‖2 = ‖R∗(Rk(x1 + x2))‖
2

= ‖A∗(Ak(x1))‖
2

≤ ‖A1+n(Ak(x1))‖
2

1+n ‖Ak(x1)‖
2n

n+1

= ‖R1+n(Rk(x1 + x2))‖
2

1+n ‖Rk(x1 + x2)‖
2n

n+1

= ‖R1+n(Rkx)‖
2

1+n ‖Rk(x)‖
2n

n+1

so, R is (n, k)-quasi-∗-paranormal operator. �

Lemma 2.5. Let T be a class A∗
n operator, and assume that σ(T ) = {0}. Then

T = O.

Proof. Since T is class A∗
n, T is normaloid, therefore T = O. �

Corollary 2.6. Let T be a k-quasi class A∗
n operator. If T is a quasinilpotent

operator, then T is a nilpotent operator.

Proof. Suppose that T is a k-quasi class A∗
n operator. Consider two cases:

Case I: If the range of T k has dense range, then it is a class A∗
n operator.

Hence by above lemma T is nilpotent operator.
Case II: If T does not have dense range, by Theorem 2.1 we can represent

T as the upper triangular matrix

T =

(

A B
O C

)

on H = T k(H)⊕ kerT ∗k.

Since T is quasinilpotent operator, σ(T ) = {0}. From Theorem 2.1 we have
σ(A) = {0}. Since A belongs to class A∗

n, A = O and we have

T k+1 =

(

O BCk

O Ck+1

)

= O.
�

Lemma 2.7. Let T ∈ L(H) be an algebraically k-quasi class A∗
n operator and

σ(T ) = {λ0}. Then T − λ0 is nilpotent.

Proof. Assume p(T ) is a k-quasi class A∗
n operator for some non-constant poly-

nomial p(z). Since σ(p(T )) = p(σ(T )) = {p(λ0)}, the operator p(T )− p(λ0) is
nilpotent by Corollary 2.6.

Let
p(z)− p(λ0) = a(z − λ0)

k(z − λ1)
k1 · · · · · (z − λn)

kn ,
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where λi 6= λj for i 6= j. Then

O = (p(T )− p(λ0))
m = am(T − λ0)

mk(T − λ1)
mk1 · · · · · (T − λn)

mkn

and hence (T − λ0)
mk = O. �

An operator T ∈ L(H) is said to be isoloid if every isolated point of σ(T )
is an eigenvalue of T , while an operator T ∈ L(H) is said to be polaroid if
every isolated point of σ(T ) is a pole of the resolvent of T . In general, if T is
polaroid, then T is isoloid. However, the converse is not true. For T ∈ L(H),
the smallest nonnegative integer p such that kerT p = kerT p+1 is called the
ascent of T and is denoted by p(T ). If no such integer exists, we set p(T ) = ∞.
We say that T ∈ L(H) is of finite ascent (finitely ascensive) if p(T ) < ∞. For
T ∈ L(H), the smallest nonnegative integer q, such that T q(H) = T q+1(H), is
called the descent of T and is denoted by q(T ). If no such integer exists, we
set q(T ) = ∞. We say that T ∈ L(H) is of finite descent if q(T − λ) < ∞ for
all λ ∈ C.

Lemma 2.8. Let T be an algebraically k-quasi class A∗
n operator. Then T is

polaroid.

Proof. Suppose T is an algebraically k-quasi class A∗
n operator. Then p(T ) is a

k-quasi class A∗
n for some non-constant polynomial p. Let λ ∈ isoσ(T ). Using

the spectral projection P = 1
2πi

∫

∂D
(T − λ)−1dλ, where D is an open disk of

center λ which contains no other points of σ(T ), we can represent T as the
direct sum

T = T1 ⊕ T2, where σ(T1) = {λ} and σ(T2) = σ(T ) \ {λ}.

Since T1 is an algebraically k-quasi classA∗
n operator, T1−λ is also algebraically

k-quasi class A∗
n. But σ(T1 − λ) = {0}, it follows from Lemma 2.7 that T1 − λ

is nilpotent operator. Therefrom T1 − λ has finite ascent and descent. On the
other hand, since T2 − λ is invertible, clearly it has finite ascent and descent.
Therefore T −λ has finite ascent and descent. Thus λ is a pole of the resolvent
of T . Hence T is polaroid, which means that T is isoloid. �

We write α(T ) = dimkerT, β(T ) = dim (H/T (H)) . An operator T ∈ L(H)
is called an upper semi-Fredholm, if it has a closed range and α(T ) < ∞,
while T is called a lower semi-Fredholm if β(T ) < ∞. However, T is called
a semi-Fredholm operator if T is either an upper or a lower semi-Fredholm,
and T is said to be a Fredholm operator if it is both an upper and a lower
semi-Fredholm. If T ∈ L(H) is semi-Fredholm, then the index is defined by

ind(T ) = α(T )− β(T ).

An operator T ∈ L(H) is said to be upper semi-Weyl operator if it is upper
semi-Fredholm and ind(T ) ≤ 0, while T ∈ L(H) is said to be lower semi-Weyl
operator if it is lower semi-Fredholm and ind(T ) ≥ 0. An operator is said to
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be Weyl operator if it is Fredholm of index zero. The Weyl spectrum and the
essential approximate spectrum are defined by

σw(T ) = {λ ∈ C : T − λ is not Weyl}

and

σuw(T ) = {λ ∈ C : T − λ is not upper semi-Weyl}.

An operator T ∈ L(H) is said to be upper semi-Browder operator, if it
is upper semi-Fredholm and p(T ) < ∞. An operator T ∈ L(H) is said to
be lower semi-Browder operator, if it is lower semi-Fredholm and q(T ) < ∞.
An operator T ∈ L(H) is said to be Browder operator, if it is Fredholm of
finite ascent and descent. The Browder spectrum and the upper semi-Browder
spectrum are defined by

σb(T ) = {λ ∈ C : T − λ is not Browder}

and

σub(T ) = {λ ∈ C : T − λ is not upper semi-Browder}.

For T ∈ L(H) we will denote p00(T ) the set of all poles of finite rank of T .
We have σ(T ) \ σb(T ) = p00(T ) and we say that T satisfies Browder’s theorem
if

σw(T ) = σb(T ) or σ(T ) \ σw(T ) = p00(T ).

For T ∈ L(H) we write π00(T ) = {λ ∈ isoσ(T ) : 0 < α(T − λ) < ∞} for
the isolated eigenvalues of finite multiplicity. We say that T satisfies Weyl’s
theorem, if

σ(T ) \ σw(T ) = π00(T ).

Let πa
00(T ) = {λ ∈ isoσa(T ) : 0 < α(T−λ) < ∞} be the set of all eigenvalues

of T of finite multiplicity, which are isolated in the approximate point spectrum.
We say that T satisfies a-Weyl’s theorem, if

σa(T ) \ σuw(T ) = πa
00(T ).

We will denote pa00(T ) the set of all left poles of finite rank of T . We have

σa(T ) \ σub(T ) = pa00(T )

and we say that T satisfies a-Browder’s theorem, if

σuw(T ) = σub(T ) or σa(T ) \ σuw(T ) = pa00(T ).

LetHol(σ(T )) be the space of all analytic functions in an open neighborhood
of σ(T ). We say that T ∈ L(H) has the single valued extension property
at λ ∈ C, if for every open neighborhood U of λ the only analytic function
f : U → C which satisfies equation (T − λ)f(λ) = 0, is the constant function
f ≡ 0. The operator T is said to have SVEP if T has SVEP at every λ ∈ C.

Theorem 2.9. If T or T ∗ is an algebraically k-quasi class A∗
n, then Weyl’s

theorem holds for f(T ) for every f ∈ Hol(σ(T )).
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Proof. Suppose T is an algebraically k-quasi classA∗
n. From Lemma 2.8 we have

T is polaroid. Since T is an algebraically k-quasi class A∗
n, p(T ) is a k-quasi

class A∗
n operator for some non-constant polynomial p. From [23, Corollary

3.9] p(T ) has SVEP. Therefore T has SVEP by [26, Theorem 3.3.9]. Then,
from [2, Theorem 3.3], T satisfies Weyl’s theorem.

Since T is isoloid from [27] we have

f(σ(T ) \ π00(T )) = σ(f(T )) \ π00(f(T )).

Then, by [23, Theorem 3.10] we have

σ(f(T )) \ π00(f(T )) = f(σ(T ) \ π00(T )) = f(σw(T )) = σw(f(T )),

which implies that Weyl’s theorem holds for f(T ).
Suppose T ∗ is an algebraically k-quasi class A∗

n, then T ∗ is polaroid. From
[2, Theorem 2.11] T is polaroid as well as isoloid. Since T ∗ has SVEP, from [1,
Theorem 4.23] T satisfies Browder’s theorem, and since T is polaroid then T
satisfies Weyl’s theorem. Since T is isoloid, as in the proof of the firs part, we
have that Weyl’s theorem holds for f(T ). �

Theorem 2.10. If T ∗ is an algebraically k-quasi class A∗
n operator, then T

satisfies a-Weyl’s theorem.

Proof. Let T ∗ be an algebraically k-quasi class A∗
n operator. T ∗ has SVEP

and from [1, Theorem 4.34], T satisfies a-Browder theorem. We use the fact
[1, Theorem 4.51]: T satisfies a-Weyl’s theorem, if and only if, T satisfies
a-Browder’s theorem and πa

00(T ) = pa00(T ). We show that πa
00(T ) = pa00(T ).

Since πa
00(T ) ⊇ pa00(T ) holds for every operator T , it would suffice to prove

the inclusion πa
00(T ) ⊆ pa00(T ). Let λ be an arbitrary point of πa

00(T ). Then
λ ∈ isoσa(T ) and 0 < α(T − λ) < ∞. Thus λ ∈ σa(T ). But T ∗ has SVEP,
hence σ(T ) = σa(T ) by [1, Corollary 2.28]. Therefore λ is an isolated point of
σ(T ). So, λ ∈ π00(T ). Since Weyl’s theorem holds for T , λ 6∈ σw(T ). Since
T − λ is Fredholm operator and T has SVEP in λ, then p(T − λ) < ∞, by [1,
Theorem 2.45.]. Therefore, T − λ is semi-upper Browder operator, and hence
λ ∈ pa00(T ). �

Let T ∈ L(H). It is well known that the inclusion σuw(f(T )) ⊆ f(σuw(T ))
holds for every f ∈ Hol(σ(T )) with no restriction on T [33, Theorem 3.3.].

Lemma 2.11. If T ∗ is an algebraically k-quasi class A∗
n operator, then

σuw(f(T )) = f(σuw(T ))

holds for every f ∈ Hol(σ(T )) .

Proof. Let T ∗ be an algebraically k-quasi class A∗
n and let f ∈ Hol(σ(T )). It

suffices to show that f(σuw(T )) ⊆ σuw(f(T )). Suppose that λ 6∈ σuw(f(T )).
Then f(T )− λ is semi-upper Weyl operator and

(1) f(T )− λ = c(T − λ1)(T − λ2) · · · · · (T − λn)g(T ),
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where c, λ1, λ2, . . . λn ∈ C, and g(T ) is invertible. Since T ∗ is an algebraically
k-quasi class A∗

n, T
∗ has SVEP. It follows from [1, Corollary 2.48] that ind(T −

λi) ≥ 0 for each i = 1, 2, . . . , n. Since

0 ≤
n
∑

i=1

ind(T − λi) = ind(f(T )− λ) ≤ 0,

T −λi is Weyl for each i = 1, 2, . . . , n. Hence λ 6∈ f(σuw(T )), and so f(σuw(T ))
⊆ σuw(f(T )). This completes the proof. �

An operator T ∈ L(H) is called a-isoloid if every isolated point of σa(T ) is
an eigenvalue of T . Clearly, if T is a-isoloid, then T is isoloid. However, the
converse is not true.

Lemma 2.12. If T ∗ is an algebraically k-quasi class A∗
n operator, then T is

a-isoloid.

Proof. Let λ be an isolated point of σa(T ). Since T
∗ has SVEP, by [1, Corollary

2.28] λ is an isolated point of σ(T ). But T ∗ is polaroid, hence T is also polaroid.
Therefore it is isoloid, and hence λ ∈ σp(T ). Thus T is a-isoloid. �

Theorem 2.13. If T ∗ is an algebraically k-quasi class A∗
n operator, then a-

Weyl’s theorem holds for f(T ) for every f ∈ Hol(σ(T )).

Proof. Let f ∈ Hol(σ(T )). From Theorem 2.10, T satisfies a-Weyl’s theorem
and we have σuw(T ) = σub(T ). It follows

σub(f(T )) = f(σub(T )) = f(σuw(T )) = σuw(f(T ))

and hence f(T ) satisfies a-Browders theorem.
It is sufficient to show πa

00(f(T )) ⊆ pa00(f(T )). Suppose λ ∈ πa
00(f(T )).

Then λ is an isolated point of σa(f(T )) and 0 < α(f(T ) − λ) < ∞. Thus
λ ∈ σa(f(T )) and equation (1) is fulfilled.

Since λ is an isolated point of f(σa(T )), if λi ∈ σa(T ), then λi is an isolated
point of σa(T ) by (1). Since T is a-isoloid, 0 < α(T − λi) < ∞ for each
i = 1, 2, . . . , n. Thus λi ∈ πa

00(T ) for each i = 1, 2, . . . , n. Since T satisfies
a-Weyl’s theorem, T − λi is upper-semi Fredholm and ind(T − λi) ≤ 0 for
each i = 1, 2, . . . , n. Therefore f(T ) − λ is upper semi-Fredholm. Since λ ∈
isoσa(f(T )), f(T ) has SVEP in λ, thus by [1, Theorem 2.45] p(f(T )−λ) < ∞,
so f(T )− λ is semi-upper Browder operator. Therefore λ ∈ pa00(f(T )). �

3. Tensor products for k-quasi class A∗

n

Let H and K denote the Hilbert spaces. For given non zero operators
T ∈ L(H) and S ∈ L(K), T ⊗ S denotes the tensor product on the product
space H ⊗K. The normaloid property is invariant under tensor products, [37].
There exist paranormal operators T and S, such that T ⊗S is not paranormal,
[4]. In [40], Stochel proved that T ⊗ S is normal, if and only if, T and S are
normal. This result was extended to class A operators, ∗-class A operators,
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class An operators and quasi class An operators in [24], [13], [30], and [31]
respectively. In this section, we prove an analogues result for k-quasi class A∗

n

operators.
Let T ∈ L(H) and S ∈ L(K) be non zero operators. Then (T ⊗ S)∗(T ⊗

S) = T ∗T ⊗ S∗S holds. By the uniqueness of positive square roots, we have
|T ⊗ S|r = |T |r ⊗ |S|r for any positive rational number r. From the density of
the rationales in the real, we obtain |T ⊗S|p = |T |p ⊗ |S|p for any positive real
number p.

Theorem 3.1. Let T ∈ L(H) and S ∈ L(K) be non zero operators. Then

T ⊗S is a k-quasi class A∗
n operator, if and only if, one of the following holds:

(1) T and S are k-quasi class A∗
n,

(2) T k+1 = O or Sk+1 = O.

Proof. We have

(T ⊗ S)∗k
(

|(T ⊗ S)n+1|
2

n+1 − |(T ⊗ S)∗|2
)

(T ⊗ S)k

= (T ⊗ S)∗k
(

|T n+1|
2

n+1 ⊗ |Sn+1|
2

n+1 − |T ∗|2 ⊗ |S∗|2
)

(T ⊗ S)k

= T ∗k
(

|T n+1|
2

n+1 − |T ∗|2
)

T k ⊗ S∗k|Sn+1|
2

n+1Sk

+ T ∗k|T ∗|2T k ⊗ S∗k
(

|Sn+1|
2

n+1 − |S∗|2
)

Sk.

Hence, if either (1) T and S are k-quasi class A∗
n operators or (2) T k+1 = O or

Sk+1 = O, then T ⊗ S is a k-quasi class A∗
n operator.

Conversely, suppose that T ⊗ S is a k-quasi class A∗
n operator. Then, for

x ∈ H, y ∈ K we get
〈

T ∗k
(

|T n+1|
2

n+1 − |T ∗|2
)

T kx, x
〉〈

S∗k|Sn+1|
2

n+1Sky, y
〉

+
〈

T ∗k|T ∗|2T kx, x
〉

〈

S∗k(|Sn+1|
2

n+1 − |S∗|2)Sky, y
〉

≥ 0.

It suffices to show that if the statement (1) does not hold, then the statement
(2) holds. Thus, assume to the contrary that neither T k+1 nor Sk+1 is the zero
operator, and T is not a k-quasi class A∗

n operator. Then, there exists x0 ∈ H,
such that:

〈

T ∗k
(

|T n+1|
2

n+1 − |T ∗|2
)

T kx0, x0

〉

= α < 0 and
〈

T ∗k|T ∗|2T kx0, x0

〉

= β > 0.

From the above relation, we have

(α+ β)
〈

S∗k|Sn+1|
2

n+1Sky, y
〉

≥ β
〈

S∗k|S∗|2Sky, y
〉

.

Thus, S is a k-quasi class A∗
n operator, because α+ β < β.

We have,
〈

S∗k|S∗|2Sky, y
〉

=
〈

|S∗|2Sky, Sky
〉

= 〈S∗Sky, S∗Sky〉 = ‖S∗Sky‖2
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and using the Holder McCarthy inequality, we get
〈

S∗k|Sn+1|
2

n+1Sky, y
〉

=

〈

(

S∗(n+1)Sn+1
)

1
n+1

Sky, Sky

〉

≤
〈

S∗(n+1)Sn+1Sky, Sky
〉

1
n+1

‖Sky‖
2n

n+1

= ‖Sn+k+1y‖
2

n+1 ‖Sky‖
2n

n+1 .

Then

(α+ β)‖Sn+k+1y‖
2

n+1 ‖Sky‖
2n

n+1 ≥ β‖S∗Sky‖2.

Since S is a k-quasi class A∗
n operator, from Theorem 2.1 S has decomposi-

tion of the form

S =

(

A B
O C

)

on H = Sk(H)⊕ kerS∗k,

where A = S |
Sk(H)

is A∗
n operator, we have

(α+ β)‖An+1µ‖
2

n+1 ‖µ‖
2n

n+1 ≥ β‖S∗µ‖2 ≥ β‖A∗µ‖2

for all µ ∈ Sk(H).
Since A ∈ A∗

n, A is normaloid. Thus, taking supremum on both sides of the
above inequality, we have

(α + β)‖A‖2 ≥ β‖A∗‖2 = β‖A‖2.

This inequality makes A = O. From Corollary 2.6, we have Sk+1 = O. This
is a contradiction to that Sk+1 is not a zero operator. So T must be a k-quasi
class A∗

n operator. A similar argument shows that S is also a k-quasi class A∗
n

operator, which completes the proof. �

4. Fuglede-Putnam theorem for k-quasi class A∗

n

The famous Fuglede-Putnam’s theorem is as follows:

Theorem 4.1. Let A and B be normal operators, and X be an operator so

that AX = XB. Then, A∗X = XB∗.

The Fuglede-Putnam’s theorem is very useful in operators’ theory, thanks
to its numerous applications. In fact, the Fuglede-Putnam’s theorem was first
proved in the A = B case by B. Fuglede [15], and then a proof in the general
case by C. R. Putnam [32]. A lot of researchers have worked on it since the
papers of Fuglede and Putnam.

Suppose {en} is an orthonormal bases in H. We define the Hilbert-Schmidt

norm of T to be ‖T ‖2 = (
∑∞

n=1 ‖Ten‖
2)

1
2 . This definition is independent of

the choice of basis (see [10]). If ‖T ‖2 < ∞, T is said to be a Hilbert-Schmidt
operator. The set of all Hilbert-Schmidt operators will be denoted by C2(H).

In the past several years, many authors have extended this theorem for sev-
eral classes of nonnormal operators. In [6], S. Berberian has extended the result
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by assuming A and B∗ are hyponormal operators and X is a Hilbert-Schmidt
operator. In [17], Furuta extended the result by assuming A and B∗ are sub-
normal operators and X is a Hilbert-Schmidt operator. A. Uchiyama and K.
Tanahashi [41] showed that Fuglede-Putnam’s theorem holds for p-hyponormal
and log-hyponormal operators. If let X ∈ L(H) be Hilbert-Schmidt class, S.
Mecheri and A. Uchiyama [28] showed that normality in Fuglede-Putnam’s
theorem can be replaced by A and B∗ class A operators. Recently M. H. M.
Rashid and M. S. M. Noorani [34] showed that the above result of S. Mecheri
and A. Uchiyama holds for A and B∗ quasi-class A operators with the addi-
tional condition ‖ |A∗| ‖ ‖ |B|−1 ‖≤ 1. In this paper, we show that if X is a
Hilbert-Schmidt operator, A and (B∗)−1 are k-quasi class A∗

n operators such
that AX = XB, then A∗X = XB∗.

For each pair of operators A,B ∈ L(H), there is an operator ΓA,B defined
on C2(H) via the formula ΓA,B(X) = AXB.

Let C1(H) be the set {C = AB : A,B ∈ C2(H)}. Then, operators belonging
to C1(H) are called trace class operators. We define the linear functional

tr : C1(H) −→ C by tr(C) =

∞
∑

n=1

〈Cen, en〉

for an orthonormal basis {en} for H. In this case, the definition of tr(C) does
not depend on the choice of an orthonormal basis, and tr(C) is called the trace
of C.

Lemma 4.2 ([10]). If 〈A,B〉 =
∑∞

n=1〈Aen, Ben〉 = tr(B∗A) = tr(AB∗) for

A and B in C2(H), and for any orthonormal basis {en} for H, then 〈·, ·〉 is an

inner product on C2(H), and C2(H) is a Hilbert-Schmidt space with respect to

this inner product.

From the above lemma, we have:

〈Γ∗X,Y 〉 = 〈X,ΓY 〉 = 〈X,AY B〉 = tr((AY B)∗X)

= tr(XB∗Y ∗A∗) = tr(A∗XB∗Y ∗) = 〈A∗XB∗, Y 〉.

So, the adjoint of Γ is given by the formula Γ∗X = A∗XB∗.

Theorem 4.3. Let A and B ∈ L(H). Then ΓA,B is a k-quasi class A∗
n operator

on C2(H) if and only if one of the following assertions holds:

(1) Ak+1 = O or Bk+1 = O;
(2) A and B∗ are k-quasi class A∗

n operators.

Proof. The unitary operator U : C2(H) → H ⊗H by a map x ⊗ y∗ → x ⊗ y
induces the ∗-isomorphism Ψ : L(C2(H)) → L(H ⊗H) by a map X → UXU∗.
Then we can obtain Ψ(ΓA,B) = A ⊗ B∗ [8]. The complete proof comes from
Theorem 3.1. �

Lemma 4.4 ([23]). Let T ∈ L(H) be a k-quasi class A∗
n operator for a positive

integer k. If λ 6= 0 and (T − λ)x = 0 for some x ∈ H, then (T − λ)∗x = 0.
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Now we are ready to extend Fuglede-Putnam’s theorem to k-quasi class A∗
n

operators.

Theorem 4.5. Let A and (B∗)−1 be k-quasi class A∗
n operators. If AX = XB

for X ∈ C2(H), then A∗X = XB∗.

Proof. Let Γ be defined on C2(H) by ΓY = AY B−1. Since A and (B∗)−1 are k-
quasi classA∗

n operators, Γ is a k-quasi classA∗
n operator on C2(H), by Theorem

4.3. Since AX = XB, ΓX = AXB−1 = X , so X is an eigenvector of Γ. By
Lemma 4.4 we have Γ∗X = A∗X(B−1)∗ = X, which implies A∗X = XB∗. �

5. Hyperinvariant subspace

Let σT (x) ⊆ C denote the local spectral of T at the point x ∈ H , i.e.,
the complement of the set ρT (x) of all λ ∈ C for which there exists an open
neighborhood U of λ in C and an analytic function f : U → H such that
(T −µ)f(µ) = x holds for all µ ∈ U. Moreover, σT (x) ⊆ σ(T ). For every closed
subset F of C, let HT (F ) = {x ∈ H : σT (x) ⊆ F} denote the corresponding
analytic spectral subspace of T .

An operator T ∈ L(H) is said to be decomposable if, for any open covering
{U, V } of the complex plane C there are two closed T -invariant subspaces Y
and Z of H such that H = Y + Z, σ(T|Y ) ⊆ U and σ(T|Z) ⊆ V. For every

decomposable operator T the identity H = HT (U) + HT (V ) holds for every
open cover {U, V } of C [26, Theorem 1.2.23].

An operator A ∈ L(H,K) is called quasi-affine if it has trivial kernel and
has dense range. An operator S ∈ L(H) is said to be a quasi-affine transform
of T ∈ L(K) if there exists a quasi-affine A ∈ L(H,K) such that AS = TA.

Theorem 5.1. Let T ∈ L(H) be a k-quasi class A∗
n operator such that T 6= zI

for all z ∈ C. If S is a decomposable quasi-affine transform of T , then T has a

nontrivial hyperinvariant subspace.

Proof. If S is a decomposable quasi-affine transform of T , then there exists a
quasi-affine A such that AS = TA, where S is decomposable. Assume that T
has no nontrivial hyperinvariant subspace. From [25, Lemma 3.6.1] σp(T ) = ∅
and HT (F ) = {0} for each closed set F proper in σ(T ). Let {U, V } be an open
cover of C such that σ(T ) \ U 6= ∅ and σ(T ) \ V 6= ∅.

Now, if x ∈ HS(U), then σS(x) ⊂ U . Hence there exists an analytic H-
valued function f defined on C \U such that (S− z)f(z) = x for all z ∈ C \U .
So (T − z)Af(z) = A(S − z)f(z) = Ax. Hence C \ U ⊂ ρT (Ax), this implies
Ax ∈ HT (U). Thus A(HS(U)) ⊆ HT (U), similar A(HS(V )) ⊆ HT (V ).

Therefore, since S is decomposable then H = HS(U) +HS(V ), and finally

A(H) = A(HS(U)) +A(HS(V )) ⊆ HT (U) +HT (V ) = {0}.

This is a contradiction. Hence, T has a nontrivial hyperinvariant subspace.
�
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Theorem 5.2. Let T ∈ L(H ⊕ K) be a k-quasi class A∗
n operator. If there

exists a nonzero vector x ∈ H ⊕ K such that σT (x) $ σ(T ), then T has a

nontrivial hyperinvariant subspace.

Proof. Let’s set M = HT (σT (x)) = {y ∈ H ⊕K : σT (y) ⊆ σT (x)}. From [26,
Theorem 1.2.16] M is a T -hyperinvariant subspace. Since x ∈ M , M 6= {0}.
SupposeM = H⊕K. Since T is a k-quasi classA∗

n operator, from [23, Corollary
3.11], T has SVEP. From [26, Theorem 1.3.2]

σ(T ) = ∪{σT (y) : y ∈ H ⊕K} ⊆ σT (x) $ σ(T ),

which is contradiction. Hence M is a nontrivial T -hyperinvariant subspace. �

6. Spectrum continuity on the set of k-quasi class A∗

n
operator

Let {En}n∈N be a sequence of compact subsets of C. Let’s define the inferior
and superior limits of {En}n∈N, denoted respectively by lim infn→∞{En} and
lim supn→∞{En} as it follows:

1) lim infn→∞{En} = {λ ∈ C : for every ǫ > 0, there exists N ∈ N such
that B(λ, ǫ) ∩ En 6= ∅ for all n > N},

2) lim supn→∞{En} = {λ ∈ C : for every ǫ > 0, there exists J ⊆ N infinite
such that B(λ, ǫ) ∩ En 6= ∅ for all n ∈ J}.

If lim infn→∞{En}=lim supn→∞{En}, then limn→∞{En} is defined by this
common limit.

A mapping p, defined on L(H), whose values are compact subsets onC is said
to be upper semi-continuous at T , if Tn → T , then lim supn→∞ p(Tn) ⊂ p(T ),
and lower semi-continuous at T , if Tn → T , then p(T ) ⊂ lim infn→∞ p(Tn). If p
is both upper and lower semi-continuous at T , then it is said to be continuous
at T and in this case limn→∞ p(Tn) = p(T ).

The spectrum σ : T → σ(T ) is upper semi-continuous by [21, Problem 102],
but it is not continuous in general as shown in the next example.

Example 6.1. Let U be the unilateral shift on l2(N) and let T and Tn, be
operators defined on l2(N)⊕ l2(N) as

T =

(

U O
O U∗

)

and Tn =

(

U 1
n
(I − UU∗)

O U∗

)

.

Observe that Tn → T, but σ(Tn) 9 σ(T ). Indeed, each Tn is similar to T1

and T1 is an unitary operator, so for every n, σ(Tn) = σ(T1) = {λ ∈ C : |λ| = 1}
and σ(T ) = {λ ∈ C : |λ| ≤ 1}.

It has been proved that σ is continuous in the set of normal operators and
hyponormal operators by Halmos in [21]. And this result has been extended
to quasihyponormal operators by S. V. Djordjević in [11], to p-hyponormal
operators by Hwang and Lee in [22], to (p, k)-quasihyponomal operators and
paranormal operators by Duggal, Jeon and Kim in [14], to quasi-clas (A, k)
operators by Gao and Fang in [19], to k-quasi-∗-class A by Gao and Li in [20].
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The Berberian extension theorem [7] says that for a given operator T ∈ L(H)
there exists a Hilbert space Y such that H ⊂ Y and a map ϕ : L(H) → L(Y )
such that ϕ : T → ϕ(T ) = T 0 preserving order such that σa(T ) = σa

(

T 0
)

=

σp

(

T 0
)

and σ(T ) = σ(T 0). If T is a k-quasi class A∗
n operator, then T 0 is a

k-quasi class A∗
n operator too, [23, Theorem 3.7].

Lemma 6.2 ([29]). If {Tn} ⊂ L(H) and T ∈ L(H) are such that Tn converges,

according to the operator norm topology to T, then isoσ(T ) ⊆ lim infn→∞ σ(Tn).

Theorem 6.3. The spectrum σ is continuous on the set of k-quasi class A∗
n

for a positive integer k.

Proof. Let {Tn} be a sequence of operators so that it belongs to k-quasi class
A∗

n operators and limn→∞ ‖Tn − T ‖ = 0, where T is a k-quasi class A∗
n op-

erator. Since the function σ is upper semi-continuous, lim supn→∞ σ(Tn) ⊂
σ(T ). Therefore, to prove the theorem, it will be sufficient to prove that
σ(T ) ⊂ lim infn→∞ σ(Tn). From [38, Proposition 4.9] it will be sufficient to
prove σa(T ) ⊂ lim infn→∞ σ(Tn). Since σ(T ) = σ(T 0), σ(Tn) = σ(T 0

n) and
σa(T ) = σa(T

0) we have

σa(T ) ⊂ lim inf
n→∞

σ(Tn) ⇐⇒ σa(T
0) ⊂ lim inf

n→∞
σ(T 0

n).

Let λ ∈ σa(T
0). Then λ ∈ σp(T

0). By [23, Theorem 3.5] T 0 has a represen-
tation

T 0 = λ⊕A on H = ker(T 0 − λ)⊕ (ker(T 0 − λ))⊥ and ker(A− λ) = {0}.

Therefore A−λ is an upper semi-Fredholm operator and α(A−λ) = 0. There
exists an ǫ > 0 such that A− (λ−µ0) is an upper semi-Fredholm operator with
ind(A− (λ−µ0)) = ind(A−λ) and α(A− (λ−µ0)) = 0 for every µ0 such that
0 < |µ0| < ǫ. Let’s set µ = λ− µ0, and we have T 0 − µ = (λ − µ)⊕ (A− µ) is
upper semi-Fredholm operator, ind(T 0 − µ) = ind(A− µ) and α(T 0 − µ) = 0.

Suppose the contrary, λ 6∈ lim infn→∞ σ(T 0
n). Then, there exists a δ > 0, a

neighborhood Dδ(λ) of λ and a subsequence {T 0
nk
} of {T 0

n} such that σ(T 0
nk
)∩

Dδ(λ) = ∅ for every k ≥ 1. This implies that T 0
nk

− µ is a Fredholm operator

and ind(T 0
nk

− µ) = 0 for every µ ∈ Dδ(λ) and

lim
n→∞

‖(T 0
nk

− µ)− (T 0 − µ)‖ = 0.

It follows from the continuity of the index that ind(T 0 − µ) = 0 and T 0 − µ
is a Fredholm operator. Since α(T 0 − µ) = 0, µ 6∈ σ(T 0) for every µ in
a ǫ-neighborhood of λ. This contradicts Lemma 6.2, therefore we must have
λ ∈ lim infn→∞ σ(T 0

n). �

Corollary 6.4. The spectrum σw is continuous on the set of a k-quasi class
A∗

n for a positive integer k.

Proof. Since Weyl’s theorem holds for k-quasi class A∗
n operators, then σw is

continuous from Theorem 6.3 and [12, Theorem 2.1]. �
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Corollary 6.5. The spectrum σb is continuous on the set of a k-quasi class
A∗

n for a positive integer k.

Proof. Since Weyl’s theorem holds for k-quasi class A∗
n operators, then σb is

continuous from Theorem 6.3 and [12, Theorem 2.2]. �
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