WEYL'S THEOREM, TENSOR PRODUCT, FUGLEDE-PUTNAM THEOREM AND CONTINUITY SPECTRUM FOR k-QUASI CLASS \mathcal{A}_n^* OPERATORS

ILMI HOXHA AND NAIM LATIF BRAHA

ABSTRACT. An operator $T \in L(H)$, is said to belong to k-quasi class \mathcal{A}_n^* operator if

 $T^{*k} \left(|T^{n+1}|^{\frac{2}{n+1}} - |T^*|^2 \right) T^k \ge O$

for some positive integer n and some positive integer k.

First, we will see some properties of this class of operators and prove Weyl's theorem for algebraically k-quasi class \mathcal{A}_n^* . Second, we consider the tensor product for k-quasi class \mathcal{A}_n^* , giving a necessary and sufficient condition for $T\otimes S$ to be a k-quasi class \mathcal{A}_n^* , when T and S are both non-zero operators. Then, the existence of a nontrivial hyperinvariant subspace of k-quasi class \mathcal{A}_n^* operator will be shown, and it will also be shown that if X is a Hilbert-Schmidt operator, A and $(B^*)^{-1}$ are k-quasi class \mathcal{A}_n^* operators such that AX = XB, then $A^*X = XB^*$. Finally, we will prove the spectrum continuity of this class of operators.

1. Introduction

Throughout this paper, let H and K be infinite dimensional separable complex Hilbert spaces with inner product $\langle \cdot, \cdot \rangle$. We denote by L(H,K) the set of all bounded operators from H into K. To simplify, we put L(H) := L(H,H). For $T \in L(H)$, we denote by $\ker T$ the null space and by T(H) the range of T. The null operator and the identity on H will be denoted by O and I, respectively. If T is an operator, then T^* is its adjoint, and $||T|| = ||T^*||$. We shall denote the set of all complex numbers by $\mathbb C$, the set of all non-negative integers by $\mathbb N$ and the complex conjugate of a complex number λ by $\overline{\lambda}$. The closure of a set M will be denoted by \overline{M} and we shall henceforth shorten $T - \lambda I$ to $T - \lambda$. An operator $T \in L(H)$, is a positive operator, $T \geq O$, if $\langle Tx, x \rangle \geq 0$ for all $x \in H$. We write $\sigma(T)$, $\sigma_p(T)$, $\sigma_s(T)$ and $\sigma_a(T)$ for the spectrum, point spectrum, surjective spectrum and approximate point spectrum, respectively.

Received March 7, 2014; Revised June 13, 2014.

²⁰¹⁰ Mathematics Subject Classification. 47B20.

Key words and phrases. k-quasi class \mathcal{A}_n^* operators, Weyl's theorem, a-Weyl's theorem, polaroid operators, tensor products, Fuglede-Putnam theorem, hyperinvariant, continuity spectrum.

Sets of isolated points and accumulation points of $\sigma(T)$ are denoted by $iso\sigma(T)$ and $acc\sigma(T)$, respectively. We write r(T) for the spectral radius. It is well known that $r(T) \leq ||T||$. The operator T is called normaloid if r(T) = ||T||.

For an operator $T \in L(H)$, as usual, $|T| = (T^*T)^{\frac{1}{2}}$. An operator T is said to be normal operator if $T^*T = TT^*$ and T is said to be hyponormal, if $|T|^2 \geq |T^*|^2$. The operator T is said to be a p-hyponormal operator if and only if $(T^*T)^p \geq (TT^*)^p$ for a positive number p [3]. The operator T is said to be (p,k)-quasihyponormal operator if $T^{*k}((T^*T)^p - (TT^*)^p)T^k \geq O$ for some positive integer k and p > 0. An operator $T \in L(H)$, is said to be paranormal [16], if $||Tx||^2 \leq ||T^2x||$ for any unit vector x in H. Further, T is said to be *-paranormal [5], if $||T^*x||^2 \leq ||T^2x||$ for any unit vector x in H. T is said to be n-paranormal operator if $||Tx||^{n+1} \leq ||T^{n+1}x|| ||x||^n$ for all $x \in H$, and T is said to be n-*-paranormal operator if $||T^*x||^{n+1} \leq ||T^{n+1}x|| ||x||^n$ for all $x \in H$. An operator T is said to be (n,k)-quasi-*-paranormal [43] if

$$||T^*T^kx|| \le ||T^{1+n+k}x||^{\frac{1}{1+n}} ||T^kx||^{\frac{n}{n+1}}$$
 for all $x \in H$.

T. Furuta, M. Ito and T. Yamazaki [18] introduced a very interesting class of bounded linear Hilbert space operators: class \mathcal{A} defined by $|T^2| \geq |T|^2$, and they showed that the class \mathcal{A} is a subclass of paranormal operators. An operator is said to be quasi class (A, k) operator if $T^{*k}(|T^2| - |T|^2)T^k > O$ for a positive integer k. B. P. Duggal, I. H. Jeon, and I. H. Kim [13], introduced *-class \mathcal{A} operator. An operator $T \in L(H)$ is said to be a *-class \mathcal{A} operator, if $|T^2| \geq |T^*|^2$. A *-class \mathcal{A} is a generalization of a hyponormal operator, [13, Theorem 1.2], and *-class \mathcal{A} is a subclass of the class of *-paranormal operators, [13, Theorem 1.3]. We denote the set of *-class \mathcal{A} by \mathcal{A}^* . An operator $T \in L(H)$, is said to be a quasi-*-class \mathcal{A} operator, if $T^*|T^2|T \geq T^*|T^*|^2T$, [39]. We denote the set of quasi-*-class \mathcal{A} by $\mathcal{Q}(\mathcal{A}^*)$. In [42], is defined class \mathcal{A}_n operator: an operator $T \in L(H)$, is said to be \mathcal{A}_n operator if $|T^{n+1}|^{\frac{2}{n+1}} \geq |T|^2$ for some positive integer n. An operator $T \in L(H)$, is said to be \mathcal{A}_n^* operator if $|T^{n+1}|^{\frac{2}{n+1}} \geq |T^*|^2$ for some positive integer n. If $T \in \mathcal{A}_n^*$, then T is n-*paranormal operator, thus T is normaloid [36]. An operator $T \in L(H)$, is said to belong to k-quasi class \mathcal{A}_n^* operator if

$$T^{*k}\left(|T^{n+1}|^{\frac{2}{n+1}} - |T^*|^2\right)T^k \ge 0$$

for some positive integer n and some positive integer k [23].

If n = 1 and k = 1, then k-quasi class \mathcal{A}_n^* operators coincide with $\mathcal{Q}(\mathcal{A}^*)$ operators.

Since $S \geq O$ implies $T^*ST \geq O$, then: If T belongs to class \mathcal{A}_n^* for some positive integer $n \geq 1$, then T belongs k-quasi class \mathcal{A}_n^* for every positive integer k.

Obviously,

1-quasi class $\mathcal{A}_n^* \subseteq$ 2-quasi class $\mathcal{A}_n^* \subseteq$ 3-quasi class $\mathcal{A}_n^* \subseteq \cdots$.

We say that $T \in L(H)$ is an algebraically k-quasi class \mathcal{A}_n^* operator if there exists a nonconstant complex polynomial p such that p(T) is a k-quasi class \mathcal{A}_{n}^{*} operator. We have the following implications:

k-quasi class $\mathcal{A}_n^* \Rightarrow$ algebraically k-quasi class \mathcal{A}_n^*

Lemma 1.1 ([9, Holder-McCarthy inequality]). Let T be a positive operator. Then the following inequalities hold for all $x \in H$:

- $\begin{array}{ll} (1) \ \langle T^r x, x \rangle \leq \langle T x, x \rangle^r \, \|x\|^{2(1-r)} \ for \ 0 < r < 1, \\ (2) \ \langle T^r x, x \rangle \geq \langle T x, x \rangle^r \, \|x\|^{2(1-r)} \ for \ r \geq 1. \end{array}$

2. Weyl's type theorems for k-quasi class \mathcal{A}_n^* operator

Theorem 2.1 ([23]). Let $T \in L(H)$ be a k-quasi class \mathcal{A}_n^* operator, T^k does not have a dense range, and let T have the following representation

$$T = \begin{pmatrix} A & B \\ O & C \end{pmatrix}$$
 on $H = \overline{T^k(H)} \oplus \ker T^{*k}$.

Then A is a class \mathcal{A}_n^* on $\overline{T^k(H)}$, $C^k = O$ and $\sigma(T) = \sigma(A) \cup \{0\}$.

A subspace M of space H is said to be nontrivial invariant (alternatively, Tinvariant) under T, if $\{0\} \neq M \neq H$ and $T(M) \subseteq M$. A closed subspace $M \subseteq H$ is said to be a nontrivial hyperinvariant subspace for T, if $\{0\} \neq M \neq H$ and is invariant under every operator $S \in L(H)$ which fulfills TS = ST.

Theorem 2.2 ([23]). If T is a k-quasi class A_n^* and M is a closed T-invariant subspace, then the restriction $T_{|\mathcal{M}}$ is also a k-quasi class \mathcal{A}_n^* operator.

Corollary 2.3. If $T \in L(H)$, is a k-quasi class A_n^* and the restriction A on $T^k(H)$ is invertible, then T is similar to a direct sum of a class \mathcal{A}_n^* and a nilpotent operator.

Proof. Suppose that $T = \begin{pmatrix} A & B \\ O & C \end{pmatrix}$ on $H = T^k(H) \oplus \ker T^{*k}$. By Theorem 2.1, Ais a class \mathcal{A}_n^* and C is a nilpotent operator with nilpotency k. Since $0 \notin \sigma(A)$ by assumption, we have $\sigma(A) \cap \sigma(C) = \emptyset$. Hence by Rosenblum's Corollary [35], there exists an operator S for which AS - SC = B. Therefore

$$T = \begin{pmatrix} A & B \\ O & C \end{pmatrix} = \begin{pmatrix} I & S \\ O & I \end{pmatrix}^{-1} \begin{pmatrix} A & O \\ O & C \end{pmatrix} \begin{pmatrix} I & S \\ O & I \end{pmatrix}$$

which completes the proof.

Lemma 2.4. Let $T \in L(H, K)$ operator, defined as

$$T = \begin{pmatrix} A & B \\ O & C \end{pmatrix}.$$

If A belongs to class \mathcal{A}_n^* operator, surjective and $C^k = O$, then T is similar $to\ (n,k)\mbox{-}quasi\mbox{-}*\mbox{-}paranormal\ operator.$

Proof. Since A is surjective and $C^k = O$ we have $\sigma_s(A) \cap \sigma_a(C) = \emptyset$. Hence by [26, Theorem 3.5.1], there exists an operator S for which AS - SC = B. Therefore

$$\begin{pmatrix} I & S \\ O & I \end{pmatrix} \begin{pmatrix} A & B \\ O & C \end{pmatrix} = \begin{pmatrix} A & O \\ O & C \end{pmatrix} \begin{pmatrix} I & S \\ O & I \end{pmatrix},$$

so T is similar to $R = \begin{pmatrix} A & O \\ O & C \end{pmatrix}$. Let $x = x_1 + x_2 \in H \oplus K$. Since A is a class \mathcal{A}_n^* , then A is n-*-paranormal operator, and since $C^k = O$ we have

$$||R^*(R^k x)||^2 = ||R^*(R^k (x_1 + x_2))||^2$$

$$= ||A^*(A^k (x_1))||^2$$

$$\leq ||A^{1+n}(A^k (x_1))||^{\frac{2}{1+n}} ||A^k (x_1)||^{\frac{2n}{n+1}}$$

$$= ||R^{1+n}(R^k (x_1 + x_2))||^{\frac{2}{1+n}} ||R^k (x_1 + x_2)||^{\frac{2n}{n+1}}$$

$$= ||R^{1+n}(R^k x)||^{\frac{2}{1+n}} ||R^k (x)||^{\frac{2n}{n+1}}$$

so, R is (n, k)-quasi-*-paranormal operator.

Lemma 2.5. Let T be a class \mathcal{A}_n^* operator, and assume that $\sigma(T) = \{0\}$. Then T = O.

Proof. Since T is class \mathcal{A}_n^* , T is normaloid, therefore T = O.

Corollary 2.6. Let T be a k-quasi class A_n^* operator. If T is a quasinilpotent operator, then T is a nilpotent operator.

Proof. Suppose that T is a k-quasi class \mathcal{A}_n^* operator. Consider two cases:

Case I: If the range of T^k has dense range, then it is a class \mathcal{A}_n^* operator. Hence by above lemma T is nilpotent operator.

Case II: If T does not have dense range, by Theorem 2.1 we can represent T as the upper triangular matrix

$$T = \begin{pmatrix} A & B \\ O & C \end{pmatrix} \quad \text{on } H = \overline{T^k(H)} \oplus \ker T^{*k}.$$

Since T is quasinilpotent operator, $\sigma(T) = \{0\}$. From Theorem 2.1 we have $\sigma(A) = \{0\}$. Since A belongs to class \mathcal{A}_n^* , A = O and we have

$$T^{k+1} = \begin{pmatrix} O & BC^k \\ O & C^{k+1} \end{pmatrix} = O.$$

Lemma 2.7. Let $T \in L(H)$ be an algebraically k-quasi class \mathcal{A}_n^* operator and $\sigma(T) = \{\lambda_0\}$. Then $T - \lambda_0$ is nilpotent.

Proof. Assume p(T) is a k-quasi class \mathcal{A}_n^* operator for some non-constant polynomial p(z). Since $\sigma(p(T)) = p(\sigma(T)) = \{p(\lambda_0)\}\$, the operator $p(T) - p(\lambda_0)$ is nilpotent by Corollary 2.6.

Let

$$p(z) - p(\lambda_0) = a(z - \lambda_0)^k (z - \lambda_1)^{k_1} \cdot \dots \cdot (z - \lambda_n)^{k_n},$$

where $\lambda_i \neq \lambda_j$ for $i \neq j$. Then

$$O = (p(T) - p(\lambda_0))^m = a^m (T - \lambda_0)^{mk} (T - \lambda_1)^{mk_1} \cdot \dots \cdot (T - \lambda_n)^{mk_n}$$
 and hence $(T - \lambda_0)^{mk} = O$.

An operator $T \in L(H)$ is said to be isoloid if every isolated point of $\sigma(T)$ is an eigenvalue of T, while an operator $T \in L(H)$ is said to be polaroid if every isolated point of $\sigma(T)$ is a pole of the resolvent of T. In general, if T is polaroid, then T is isoloid. However, the converse is not true. For $T \in L(H)$, the smallest nonnegative integer p such that $\ker T^p = \ker T^{p+1}$ is called the ascent of T and is denoted by p(T). If no such integer exists, we set $p(T) = \infty$. We say that $T \in L(H)$ is of finite ascent (finitely ascensive) if $p(T) < \infty$. For $T \in L(H)$, the smallest nonnegative integer q, such that $T^q(H) = T^{q+1}(H)$, is called the descent of T and is denoted by q(T). If no such integer exists, we set $q(T) = \infty$. We say that $T \in L(H)$ is of finite descent if $q(T - \lambda) < \infty$ for all $\lambda \in \mathbb{C}$.

Lemma 2.8. Let T be an algebraically k-quasi class A_n^* operator. Then T is polaroid.

Proof. Suppose T is an algebraically k-quasi class \mathcal{A}_n^* operator. Then p(T) is a k-quasi class \mathcal{A}_n^* for some non-constant polynomial p. Let $\lambda \in \mathrm{iso}\sigma(T)$. Using the spectral projection $P = \frac{1}{2\pi i} \int_{\partial D} (T - \lambda)^{-1} d\lambda$, where D is an open disk of center λ which contains no other points of $\sigma(T)$, we can represent T as the direct sum

$$T = T_1 \oplus T_2$$
, where $\sigma(T_1) = \{\lambda\}$ and $\sigma(T_2) = \sigma(T) \setminus \{\lambda\}$.

Since T_1 is an algebraically k-quasi class \mathcal{A}_n^* operator, $T_1 - \lambda$ is also algebraically k-quasi class \mathcal{A}_n^* . But $\sigma(T_1 - \lambda) = \{0\}$, it follows from Lemma 2.7 that $T_1 - \lambda$ is nilpotent operator. Therefrom $T_1 - \lambda$ has finite ascent and descent. On the other hand, since $T_2 - \lambda$ is invertible, clearly it has finite ascent and descent. Therefore $T - \lambda$ has finite ascent and descent. Thus λ is a pole of the resolvent of T. Hence T is polaroid, which means that T is isoloid.

We write $\alpha(T) = \operatorname{dimker} T$, $\beta(T) = \operatorname{dim} (H/T(H))$. An operator $T \in L(H)$ is called an upper semi-Fredholm, if it has a closed range and $\alpha(T) < \infty$, while T is called a lower semi-Fredholm if $\beta(T) < \infty$. However, T is called a semi-Fredholm operator if T is either an upper or a lower semi-Fredholm, and T is said to be a Fredholm operator if it is both an upper and a lower semi-Fredholm. If $T \in L(H)$ is semi-Fredholm, then the index is defined by

$$\operatorname{ind}(T) = \alpha(T) - \beta(T).$$

An operator $T \in L(H)$ is said to be upper semi-Weyl operator if it is upper semi-Fredholm and $\operatorname{ind}(T) \leq 0$, while $T \in L(H)$ is said to be lower semi-Weyl operator if it is lower semi-Fredholm and $\operatorname{ind}(T) \geq 0$. An operator is said to

be Weyl operator if it is Fredholm of index zero. The Weyl spectrum and the essential approximate spectrum are defined by

$$\sigma_w(T) = \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not Weyl} \}$$

and

$$\sigma_{uw}(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not upper semi-Weyl}\}.$$

An operator $T \in L(H)$ is said to be upper semi-Browder operator, if it is upper semi-Fredholm and $p(T) < \infty$. An operator $T \in L(H)$ is said to be lower semi-Browder operator, if it is lower semi-Fredholm and $q(T) < \infty$. An operator $T \in L(H)$ is said to be Browder operator, if it is Fredholm of finite ascent and descent. The Browder spectrum and the upper semi-Browder spectrum are defined by

$$\sigma_b(T) = \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not Browder} \}$$

and

$$\sigma_{ub}(T) = \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not upper semi-Browder} \}.$$

For $T \in L(H)$ we will denote $p_{00}(T)$ the set of all poles of finite rank of T. We have $\sigma(T) \setminus \sigma_b(T) = p_{00}(T)$ and we say that T satisfies Browder's theorem if

$$\sigma_w(T) = \sigma_b(T) \text{ or } \sigma(T) \setminus \sigma_w(T) = p_{00}(T).$$

For $T \in L(H)$ we write $\pi_{00}(T) = \{\lambda \in iso\sigma(T) : 0 < \alpha(T - \lambda) < \infty\}$ for the isolated eigenvalues of finite multiplicity. We say that T satisfies Weyl's theorem, if

$$\sigma(T) \setminus \sigma_w(T) = \pi_{00}(T).$$

Let $\pi_{00}^a(T) = \{\lambda \in iso\sigma_a(T) : 0 < \alpha(T-\lambda) < \infty\}$ be the set of all eigenvalues of T of finite multiplicity, which are isolated in the approximate point spectrum. We say that T satisfies a-Weyl's theorem, if

$$\sigma_a(T) \setminus \sigma_{uw}(T) = \pi_{00}^a(T).$$

We will denote $p_{00}^a(T)$ the set of all left poles of finite rank of T. We have

$$\sigma_a(T) \setminus \sigma_{ub}(T) = p_{00}^a(T)$$

and we say that T satisfies a-Browder's theorem, if

$$\sigma_{uw}(T) = \sigma_{ub}(T) \text{ or } \sigma_a(T) \setminus \sigma_{uw}(T) = p_{00}^a(T).$$

Let $Hol(\sigma(T))$ be the space of all analytic functions in an open neighborhood of $\sigma(T)$. We say that $T \in L(H)$ has the single valued extension property at $\lambda \in \mathbb{C}$, if for every open neighborhood U of λ the only analytic function $f: U \to \mathbb{C}$ which satisfies equation $(T - \lambda)f(\lambda) = 0$, is the constant function $f \equiv 0$. The operator T is said to have SVEP if T has SVEP at every $\lambda \in \mathbb{C}$.

Theorem 2.9. If T or T^* is an algebraically k-quasi class \mathcal{A}_n^* , then Weyl's theorem holds for f(T) for every $f \in Hol(\sigma(T))$.

Proof. Suppose T is an algebraically k-quasi class \mathcal{A}_n^* . From Lemma 2.8 we have T is polaroid. Since T is an algebraically k-quasi class \mathcal{A}_n^* , p(T) is a k-quasi class \mathcal{A}_n^* operator for some non-constant polynomial p. From [23, Corollary 3.9] p(T) has SVEP. Therefore T has SVEP by [26, Theorem 3.3.9]. Then, from [2, Theorem 3.3], T satisfies Weyl's theorem.

Since T is isoloid from [27] we have

$$f(\sigma(T) \setminus \pi_{00}(T)) = \sigma(f(T)) \setminus \pi_{00}(f(T)).$$

Then, by [23, Theorem 3.10] we have

$$\sigma(f(T)) \setminus \pi_{00}(f(T)) = f(\sigma(T) \setminus \pi_{00}(T)) = f(\sigma_w(T)) = \sigma_w(f(T)),$$

which implies that Weyl's theorem holds for f(T).

Suppose T^* is an algebraically k-quasi class \mathcal{A}_n^* , then T^* is polaroid. From [2, Theorem 2.11] T is polaroid as well as isoloid. Since T^* has SVEP, from [1, Theorem 4.23] T satisfies Browder's theorem, and since T is polaroid then T satisfies Weyl's theorem. Since T is isoloid, as in the proof of the firs part, we have that Weyl's theorem holds for f(T).

Theorem 2.10. If T^* is an algebraically k-quasi class \mathcal{A}_n^* operator, then T satisfies a-Weyl's theorem.

Proof. Let T^* be an algebraically k-quasi class \mathcal{A}_n^* operator. T^* has SVEP and from [1, Theorem 4.34], T satisfies a-Browder theorem. We use the fact [1, Theorem 4.51]: T satisfies a-Weyl's theorem, if and only if, T satisfies a-Browder's theorem and $\pi_{00}^a(T) = p_{00}^a(T)$. We show that $\pi_{00}^a(T) = p_{00}^a(T)$. Since $\pi_{00}^a(T) \supseteq p_{00}^a(T)$ holds for every operator T, it would suffice to prove the inclusion $\pi_{00}^a(T) \subseteq p_{00}^a(T)$. Let λ be an arbitrary point of $\pi_{00}^a(T)$. Then $\lambda \in \text{iso} \sigma_a(T)$ and $0 < \alpha(T - \lambda) < \infty$. Thus $\lambda \in \sigma_a(T)$. But T^* has SVEP, hence $\sigma(T) = \sigma_a(T)$ by [1, Corollary 2.28]. Therefore λ is an isolated point of $\sigma(T)$. So, $\lambda \in \pi_{00}(T)$. Since Weyl's theorem holds for T, $\lambda \notin \sigma_w(T)$. Since $T - \lambda$ is Fredholm operator and T has SVEP in λ , then $p(T - \lambda) < \infty$, by [1, Theorem 2.45.]. Therefore, $T - \lambda$ is semi-upper Browder operator, and hence $\lambda \in p_{00}^a(T)$.

Let $T \in L(H)$. It is well known that the inclusion $\sigma_{uw}(f(T)) \subseteq f(\sigma_{uw}(T))$ holds for every $f \in Hol(\sigma(T))$ with no restriction on T [33, Theorem 3.3.].

Lemma 2.11. If T^* is an algebraically k-quasi class \mathcal{A}_n^* operator, then

$$\sigma_{uw}(f(T)) = f(\sigma_{uw}(T))$$

holds for every $f \in Hol(\sigma(T))$.

Proof. Let T^* be an algebraically k-quasi class \mathcal{A}_n^* and let $f \in Hol(\sigma(T))$. It suffices to show that $f(\sigma_{uw}(T)) \subseteq \sigma_{uw}(f(T))$. Suppose that $\lambda \notin \sigma_{uw}(f(T))$. Then $f(T) - \lambda$ is semi-upper Weyl operator and

(1)
$$f(T) - \lambda = c(T - \lambda_1)(T - \lambda_2) \cdot \dots \cdot (T - \lambda_n)g(T),$$

where $c, \lambda_1, \lambda_2, \ldots \lambda_n \in \mathbb{C}$, and g(T) is invertible. Since T^* is an algebraically k-quasi class \mathcal{A}_n^* , T^* has SVEP. It follows from [1, Corollary 2.48] that $\operatorname{ind}(T - \lambda_i) \geq 0$ for each $i = 1, 2, \ldots, n$. Since

$$0 \le \sum_{i=1}^{n} \operatorname{ind}(T - \lambda_i) = \operatorname{ind}(f(T) - \lambda) \le 0,$$

 $T - \lambda_i$ is Weyl for each i = 1, 2, ..., n. Hence $\lambda \notin f(\sigma_{uw}(T))$, and so $f(\sigma_{uw}(T)) \subseteq \sigma_{uw}(f(T))$. This completes the proof.

An operator $T \in L(H)$ is called a-isoloid if every isolated point of $\sigma_a(T)$ is an eigenvalue of T. Clearly, if T is a-isoloid, then T is isoloid. However, the converse is not true.

Lemma 2.12. If T^* is an algebraically k-quasi class \mathcal{A}_n^* operator, then T is a-isoloid.

Proof. Let λ be an isolated point of $\sigma_a(T)$. Since T^* has SVEP, by [1, Corollary 2.28] λ is an isolated point of $\sigma(T)$. But T^* is polaroid, hence T is also polaroid. Therefore it is isoloid, and hence $\lambda \in \sigma_p(T)$. Thus T is a-isoloid.

Theorem 2.13. If T^* is an algebraically k-quasi class \mathcal{A}_n^* operator, then a-Weyl's theorem holds for f(T) for every $f \in Hol(\sigma(T))$.

Proof. Let $f \in Hol(\sigma(T))$. From Theorem 2.10, T satisfies a-Weyl's theorem and we have $\sigma_{uw}(T) = \sigma_{ub}(T)$. It follows

$$\sigma_{ub}(f(T)) = f(\sigma_{ub}(T)) = f(\sigma_{uw}(T)) = \sigma_{uw}(f(T))$$

and hence f(T) satisfies a-Browders theorem.

It is sufficient to show $\pi_{00}^a(f(T)) \subseteq p_{00}^a(f(T))$. Suppose $\lambda \in \pi_{00}^a(f(T))$. Then λ is an isolated point of $\sigma_a(f(T))$ and $0 < \alpha(f(T) - \lambda) < \infty$. Thus $\lambda \in \sigma_a(f(T))$ and equation (1) is fulfilled.

Since λ is an isolated point of $f(\sigma_a(T))$, if $\lambda_i \in \sigma_a(T)$, then λ_i is an isolated point of $\sigma_a(T)$ by (1). Since T is a-isoloid, $0 < \alpha(T - \lambda_i) < \infty$ for each $i = 1, 2, \ldots, n$. Thus $\lambda_i \in \pi_{00}^a(T)$ for each $i = 1, 2, \ldots, n$. Since T satisfies a-Weyl's theorem, $T - \lambda_i$ is upper-semi Fredholm and $\operatorname{ind}(T - \lambda_i) \leq 0$ for each $i = 1, 2, \ldots, n$. Therefore $f(T) - \lambda$ is upper semi-Fredholm. Since $\lambda \in \operatorname{iso}\sigma_a(f(T))$, f(T) has SVEP in λ , thus by [1, Theorem 2.45] $p(f(T) - \lambda) < \infty$, so $f(T) - \lambda$ is semi-upper Browder operator. Therefore $\lambda \in p_{00}^a(f(T))$. \square

3. Tensor products for k-quasi class \mathcal{A}_n^*

Let H and K denote the Hilbert spaces. For given non zero operators $T \in L(H)$ and $S \in L(K)$, $T \otimes S$ denotes the tensor product on the product space $H \otimes K$. The normaloid property is invariant under tensor products, [37]. There exist paranormal operators T and S, such that $T \otimes S$ is not paranormal, [4]. In [40], Stochel proved that $T \otimes S$ is normal, if and only if, T and S are normal. This result was extended to class A operators, *-class A operators,

class \mathcal{A}_n operators and quasi class \mathcal{A}_n operators in [24], [13], [30], and [31] respectively. In this section, we prove an analogues result for k-quasi class \mathcal{A}_n^* operators.

Let $T \in L(H)$ and $S \in L(K)$ be non zero operators. Then $(T \otimes S)^*(T \otimes S) = T^*T \otimes S^*S$ holds. By the uniqueness of positive square roots, we have $|T \otimes S|^r = |T|^r \otimes |S|^r$ for any positive rational number r. From the density of the rationales in the real, we obtain $|T \otimes S|^p = |T|^p \otimes |S|^p$ for any positive real number p.

Theorem 3.1. Let $T \in L(H)$ and $S \in L(K)$ be non zero operators. Then $T \otimes S$ is a k-quasi class \mathcal{A}_n^* operator, if and only if, one of the following holds:

- (1) T and S are k-quasi class \mathcal{A}_n^* ,
- (2) $T^{k+1} = O \text{ or } S^{k+1} = O.$

Proof. We have

$$(T \otimes S)^{*k} \left(|(T \otimes S)^{n+1}|^{\frac{2}{n+1}} - |(T \otimes S)^*|^2 \right) (T \otimes S)^k$$

$$= (T \otimes S)^{*k} \left(|T^{n+1}|^{\frac{2}{n+1}} \otimes |S^{n+1}|^{\frac{2}{n+1}} - |T^*|^2 \otimes |S^*|^2 \right) (T \otimes S)^k$$

$$= T^{*k} \left(|T^{n+1}|^{\frac{2}{n+1}} - |T^*|^2 \right) T^k \otimes S^{*k} |S^{n+1}|^{\frac{2}{n+1}} S^k$$

$$+ T^{*k} |T^*|^2 T^k \otimes S^{*k} \left(|S^{n+1}|^{\frac{2}{n+1}} - |S^*|^2 \right) S^k.$$

Hence, if either (1) T and S are k-quasi class \mathcal{A}_n^* operators or (2) $T^{k+1} = O$ or $S^{k+1} = O$, then $T \otimes S$ is a k-quasi class \mathcal{A}_n^* operator.

Conversely, suppose that $T \otimes S$ is a k-quasi class \mathcal{A}_n^* operator. Then, for $x \in H, y \in K$ we get

$$\begin{split} & \left\langle T^{*k} \left(|T^{n+1}|^{\frac{2}{n+1}} - |T^*|^2 \right) T^k x, x \right\rangle \left\langle S^{*k} |S^{n+1}|^{\frac{2}{n+1}} S^k y, y \right\rangle \\ & + \left\langle T^{*k} |T^*|^2 T^k x, x \right\rangle \left\langle S^{*k} (|S^{n+1}|^{\frac{2}{n+1}} - |S^*|^2) S^k y, y \right\rangle \geq 0. \end{split}$$

It suffices to show that if the statement (1) does not hold, then the statement (2) holds. Thus, assume to the contrary that neither T^{k+1} nor S^{k+1} is the zero operator, and T is not a k-quasi class \mathcal{A}_n^* operator. Then, there exists $x_0 \in H$, such that:

$$\left\langle T^{*k} \left(|T^{n+1}|^{\frac{2}{n+1}} - |T^*|^2 \right) T^k x_0, x_0 \right\rangle = \alpha < 0 \text{ and }$$
$$\left\langle T^{*k} |T^*|^2 T^k x_0, x_0 \right\rangle = \beta > 0.$$

From the above relation, we have

$$(\alpha+\beta)\left\langle S^{*k}|S^{n+1}|^{\frac{2}{n+1}}S^ky,y\right\rangle \geq \beta\left\langle S^{*k}|S^*|^2S^ky,y\right\rangle.$$

Thus, S is a k-quasi class \mathcal{A}_n^* operator, because $\alpha + \beta < \beta$. We have.

$$\left\langle S^{*k}|S^*|^2S^ky,y\right\rangle = \left\langle |S^*|^2S^ky,S^ky\right\rangle = \left\langle S^*S^ky,S^*S^ky\right\rangle = \|S^*S^ky\|^2$$

and using the Holder McCarthy inequality, we get

$$\begin{split} \left\langle S^{*k} | S^{n+1} |^{\frac{2}{n+1}} S^k y, y \right\rangle &= \left\langle \left(S^{*(n+1)} S^{n+1} \right)^{\frac{1}{n+1}} S^k y, S^k y \right\rangle \\ &\leq \left\langle S^{*(n+1)} S^{n+1} S^k y, S^k y \right\rangle^{\frac{1}{n+1}} \| S^k y \|^{\frac{2n}{n+1}} \\ &= \| S^{n+k+1} y \|^{\frac{2}{n+1}} \| S^k y \|^{\frac{2n}{n+1}}. \end{split}$$

Then

$$(\alpha + \beta) \|S^{n+k+1}y\|^{\frac{2}{n+1}} \|S^ky\|^{\frac{2n}{n+1}} \ge \beta \|S^*S^ky\|^2.$$

Since S is a $k\text{-quasi class }\mathcal{A}_n^*$ operator, from Theorem 2.1 S has decomposition of the form

$$S = \begin{pmatrix} A & B \\ O & C \end{pmatrix}$$
 on $H = \overline{S^k(H)} \oplus ker S^{*k}$,

where $A = S \mid_{\overline{S^k(H)}}$ is \mathcal{A}_n^* operator, we have

$$(\alpha + \beta) \|A^{n+1}\mu\|^{\frac{2}{n+1}} \|\mu\|^{\frac{2n}{n+1}} \ge \beta \|S^*\mu\|^2 \ge \beta \|A^*\mu\|^2$$

for all $\mu \in \overline{S^k(H)}$.

Since $A \in \mathcal{A}_n^*$, A is normaloid. Thus, taking supremum on both sides of the above inequality, we have

$$(\alpha + \beta) ||A||^2 \ge \beta ||A^*||^2 = \beta ||A||^2.$$

This inequality makes A=O. From Corollary 2.6, we have $S^{k+1}=O$. This is a contradiction to that S^{k+1} is not a zero operator. So T must be a k-quasi class \mathcal{A}_n^* operator. A similar argument shows that S is also a k-quasi class \mathcal{A}_n^* operator, which completes the proof.

4. Fuglede-Putnam theorem for k-quasi class \mathcal{A}_n^*

The famous Fuglede-Putnam's theorem is as follows:

Theorem 4.1. Let A and B be normal operators, and X be an operator so that AX = XB. Then, $A^*X = XB^*$.

The Fuglede-Putnam's theorem is very useful in operators' theory, thanks to its numerous applications. In fact, the Fuglede-Putnam's theorem was first proved in the A=B case by B. Fuglede [15], and then a proof in the general case by C. R. Putnam [32]. A lot of researchers have worked on it since the papers of Fuglede and Putnam.

Suppose $\{e_n\}$ is an orthonormal bases in H. We define the Hilbert-Schmidt norm of T to be $||T||_2 = (\sum_{n=1}^{\infty} ||Te_n||^2)^{\frac{1}{2}}$. This definition is independent of the choice of basis (see [10]). If $||T||_2 < \infty$, T is said to be a Hilbert-Schmidt operator. The set of all Hilbert-Schmidt operators will be denoted by $\mathcal{C}_2(H)$.

In the past several years, many authors have extended this theorem for several classes of nonnormal operators. In [6], S. Berberian has extended the result

by assuming A and B^* are hyponormal operators and X is a Hilbert-Schmidt operator. In [17], Furuta extended the result by assuming A and B^* are subnormal operators and X is a Hilbert-Schmidt operator. A. Uchiyama and K. Tanahashi [41] showed that Fuglede-Putnam's theorem holds for p-hyponormal and log-hyponormal operators. If let $X \in L(H)$ be Hilbert-Schmidt class, S. Mecheri and A. Uchiyama [28] showed that normality in Fuglede-Putnam's theorem can be replaced by A and B^* class $\mathcal A$ operators. Recently M. H. M. Rashid and M. S. M. Noorani [34] showed that the above result of S. Mecheri and A. Uchiyama holds for A and B^* quasi-class $\mathcal A$ operators with the additional condition $\| \ |A^*| \ \| \ \| \ |B|^{-1} \ \| \le 1$. In this paper, we show that if X is a Hilbert-Schmidt operator, A and $(B^*)^{-1}$ are k-quasi class $\mathcal A_n^*$ operators such that AX = XB, then $A^*X = XB^*$.

For each pair of operators $A, B \in L(H)$, there is an operator $\Gamma_{A,B}$ defined on $\mathcal{C}_2(H)$ via the formula $\Gamma_{A,B}(X) = AXB$.

Let $C_1(H)$ be the set $\{C = AB : A, B \in C_2(H)\}$. Then, operators belonging to $C_1(H)$ are called trace class operators. We define the linear functional

$$tr: \mathcal{C}_1(H) \longrightarrow \mathbb{C} \text{ by } tr(C) = \sum_{n=1}^{\infty} \langle Ce_n, e_n \rangle$$

for an orthonormal basis $\{e_n\}$ for H. In this case, the definition of tr(C) does not depend on the choice of an orthonormal basis, and tr(C) is called the trace of C.

Lemma 4.2 ([10]). If $\langle A, B \rangle = \sum_{n=1}^{\infty} \langle Ae_n, Be_n \rangle = tr(B^*A) = tr(AB^*)$ for A and B in $C_2(H)$, and for any orthonormal basis $\{e_n\}$ for H, then $\langle \cdot, \cdot \rangle$ is an inner product on $C_2(H)$, and $C_2(H)$ is a Hilbert-Schmidt space with respect to this inner product.

From the above lemma, we have:

$$\begin{split} \langle \Gamma^* X, Y \rangle &= \langle X, \Gamma Y \rangle = \langle X, AYB \rangle = tr((AYB)^* X) \\ &= tr(XB^* Y^* A^*) = tr(A^* X B^* Y^*) = \langle A^* X B^*, Y \rangle. \end{split}$$

So, the adjoint of Γ is given by the formula $\Gamma^*X = A^*XB^*$.

Theorem 4.3. Let A and $B \in L(H)$. Then $\Gamma_{A,B}$ is a k-quasi class \mathcal{A}_n^* operator on $\mathcal{C}_2(H)$ if and only if one of the following assertions holds:

- (1) $A^{k+1} = O$ or $B^{k+1} = O$;
- (2) A and B^* are k-quasi class \mathcal{A}_n^* operators.

Proof. The unitary operator $U: \mathcal{C}_2(H) \to H \otimes H$ by a map $x \otimes y^* \to x \otimes y$ induces the *-isomorphism $\Psi: L(\mathcal{C}_2(H)) \to L(H \otimes H)$ by a map $X \to UXU^*$. Then we can obtain $\Psi(\Gamma_{A,B}) = A \otimes B^*$ [8]. The complete proof comes from Theorem 3.1.

Lemma 4.4 ([23]). Let $T \in L(H)$ be a k-quasi class \mathcal{A}_n^* operator for a positive integer k. If $\lambda \neq 0$ and $(T - \lambda)x = 0$ for some $x \in H$, then $(T - \lambda)^*x = 0$.

Now we are ready to extend Fuglede-Putnam's theorem to k-quasi class \mathcal{A}_n^* operators.

Theorem 4.5. Let A and $(B^*)^{-1}$ be k-quasi class \mathcal{A}_n^* operators. If AX = XB for $X \in \mathcal{C}_2(H)$, then $A^*X = XB^*$.

Proof. Let Γ be defined on $C_2(H)$ by $\Gamma Y = AYB^{-1}$. Since A and $(B^*)^{-1}$ are k-quasi class \mathcal{A}_n^* operators, Γ is a k-quasi class \mathcal{A}_n^* operator on $C_2(H)$, by Theorem 4.3. Since AX = XB, $\Gamma X = AXB^{-1} = X$, so X is an eigenvector of Γ . By Lemma 4.4 we have $\Gamma^*X = A^*X(B^{-1})^* = X$, which implies $A^*X = XB^*$. \square

5. Hyperinvariant subspace

Let $\sigma_T(x) \subseteq \mathbb{C}$ denote the local spectral of T at the point $x \in H$, i.e., the complement of the set $\rho_T(x)$ of all $\lambda \in \mathbb{C}$ for which there exists an open neighborhood U of λ in \mathbb{C} and an analytic function $f: U \to H$ such that $(T-\mu)f(\mu) = x$ holds for all $\mu \in U$. Moreover, $\sigma_T(x) \subseteq \sigma(T)$. For every closed subset F of \mathbb{C} , let $H_T(F) = \{x \in H : \sigma_T(x) \subseteq F\}$ denote the corresponding analytic spectral subspace of T.

An operator $T \in L(H)$ is said to be decomposable if, for any open covering $\{U,V\}$ of the complex plane $\mathbb C$ there are two closed T-invariant subspaces Y and Z of H such that H=Y+Z, $\sigma(T_{|Y})\subseteq U$ and $\sigma(T_{|Z})\subseteq V$. For every decomposable operator T the identity $H=H_T(\overline{U})+H_T(\overline{V})$ holds for every open cover $\{U,V\}$ of $\mathbb C$ [26, Theorem 1.2.23].

An operator $A \in L(H, K)$ is called quasi-affine if it has trivial kernel and has dense range. An operator $S \in L(H)$ is said to be a quasi-affine transform of $T \in L(K)$ if there exists a quasi-affine $A \in L(H, K)$ such that AS = TA.

Theorem 5.1. Let $T \in L(H)$ be a k-quasi class \mathcal{A}_n^* operator such that $T \neq zI$ for all $z \in \mathbb{C}$. If S is a decomposable quasi-affine transform of T, then T has a nontrivial hyperinvariant subspace.

Proof. If S is a decomposable quasi-affine transform of T, then there exists a quasi-affine A such that AS = TA, where S is decomposable. Assume that T has no nontrivial hyperinvariant subspace. From [25, Lemma 3.6.1] $\sigma_p(T) = \emptyset$ and $H_T(F) = \{0\}$ for each closed set F proper in $\sigma(T)$. Let $\{U, V\}$ be an open cover of $\mathbb C$ such that $\sigma(T) \setminus \overline{U} \neq \emptyset$ and $\sigma(T) \setminus \overline{V} \neq \emptyset$.

Now, if $x \in H_S(\overline{U})$, then $\sigma_S(x) \subset \overline{U}$. Hence there exists an analytic H-valued function f defined on $\mathbb{C} \setminus \overline{U}$ such that (S-z)f(z) = x for all $z \in \mathbb{C} \setminus \overline{U}$. So (T-z)Af(z) = A(S-z)f(z) = Ax. Hence $\mathbb{C} \setminus \overline{U} \subset \rho_T(Ax)$, this implies $Ax \in H_T(\overline{U})$. Thus $A(H_S(\overline{U})) \subseteq H_T(\overline{U})$, similar $A(H_S(\overline{V})) \subseteq H_T(\overline{V})$.

Therefore, since S is decomposable then $H = H_S(\overline{U}) + H_S(\overline{V})$, and finally

$$A(H) = A(H_S(\overline{U})) + A(H_S(\overline{V})) \subseteq H_T(\overline{U}) + H_T(\overline{V}) = \{0\}.$$

This is a contradiction. Hence, T has a nontrivial hyperinvariant subspace.

г

Theorem 5.2. Let $T \in L(H \oplus K)$ be a k-quasi class \mathcal{A}_n^* operator. If there exists a nonzero vector $x \in H \oplus K$ such that $\sigma_T(x) \subsetneq \sigma(T)$, then T has a nontrivial hyperinvariant subspace.

Proof. Let's set $M = H_T(\sigma_T(x)) = \{y \in H \oplus K : \sigma_T(y) \subseteq \sigma_T(x)\}$. From [26, Theorem 1.2.16] M is a T-hyperinvariant subspace. Since $x \in M$, $M \neq \{0\}$. Suppose $M = H \oplus K$. Since T is a k-quasi class \mathcal{A}_n^* operator, from [23, Corollary 3.11], T has SVEP. From [26, Theorem 1.3.2]

$$\sigma(T) = \bigcup \{ \sigma_T(y) : y \in H \oplus K \} \subseteq \sigma_T(x) \subsetneq \sigma(T),$$

which is contradiction. Hence M is a nontrivial T-hyperinvariant subspace. \square

6. Spectrum continuity on the set of k-quasi class \mathcal{A}_n^* operator

Let $\{E_n\}_{n\in\mathbb{N}}$ be a sequence of compact subsets of \mathbb{C} . Let's define the inferior and superior limits of $\{E_n\}_{n\in\mathbb{N}}$, denoted respectively by $\liminf_{n\to\infty} \{E_n\}$ and $\limsup_{n\to\infty} \{E_n\}$ as it follows:

- 1) $\liminf_{n\to\infty} \{E_n\} = \{\lambda \in \mathbb{C} : \text{for every } \epsilon > 0, \text{ there exists } N \in \mathbb{N} \text{ such that } B(\lambda, \epsilon) \cap E_n \neq \emptyset \text{ for all } n > N\},$
- 2) $\limsup_{n\to\infty} \{E_n\} = \{\lambda \in \mathbb{C} : \text{for every } \epsilon > 0, \text{ there exists } J \subseteq \mathbb{N} \text{ infinite such that } B(\lambda,\epsilon) \cap E_n \neq \emptyset \text{ for all } n \in J\}.$

If $\liminf_{n\to\infty} \{E_n\} = \limsup_{n\to\infty} \{E_n\}$, then $\lim_{n\to\infty} \{E_n\}$ is defined by this common limit.

A mapping p, defined on L(H), whose values are compact subsets on $\mathbb C$ is said to be upper semi-continuous at T, if $T_n \to T$, then $\limsup_{n \to \infty} p(T_n) \subset p(T)$, and lower semi-continuous at T, if $T_n \to T$, then $p(T) \subset \liminf_{n \to \infty} p(T_n)$. If p is both upper and lower semi-continuous at T, then it is said to be continuous at T and in this case $\lim_{n \to \infty} p(T_n) = p(T)$.

The spectrum $\sigma: T \to \sigma(T)$ is upper semi-continuous by [21, Problem 102], but it is not continuous in general as shown in the next example.

Example 6.1. Let U be the unilateral shift on $l^2(\mathbb{N})$ and let T and T_n , be operators defined on $l^2(\mathbb{N}) \oplus l^2(\mathbb{N})$ as

$$T = \begin{pmatrix} U & O \\ O & U^* \end{pmatrix}$$
 and $T_n = \begin{pmatrix} U & \frac{1}{n}(I - UU^*) \\ O & U^* \end{pmatrix}$.

Observe that $T_n \to T$, but $\sigma(T_n) \nrightarrow \sigma(T)$. Indeed, each T_n is similar to T_1 and T_1 is an unitary operator, so for every n, $\sigma(T_n) = \sigma(T_1) = \{\lambda \in \mathbb{C} : |\lambda| = 1\}$ and $\sigma(T) = \{\lambda \in \mathbb{C} : |\lambda| \leq 1\}$.

It has been proved that σ is continuous in the set of normal operators and hyponormal operators by Halmos in [21]. And this result has been extended to quasihyponormal operators by S. V. Djordjević in [11], to p-hyponormal operators by Hwang and Lee in [22], to (p,k)-quasihyponomal operators and paranormal operators by Duggal, Jeon and Kim in [14], to quasi-clas (\mathcal{A}, k) operators by Gao and Fang in [19], to k-quasi-*-class \mathcal{A} by Gao and Li in [20].

The Berberian extension theorem [7] says that for a given operator $T \in L(H)$ there exists a Hilbert space Y such that $H \subset Y$ and a map $\varphi : L(H) \to L(Y)$ such that $\varphi : T \to \varphi(T) = T^0$ preserving order such that $\sigma_a(T) = \sigma_a\left(T^0\right) = \sigma_p\left(T^0\right)$ and $\sigma(T) = \sigma(T^0)$. If T is a k-quasi class \mathcal{A}_n^* operator, then T^0 is a k-quasi class \mathcal{A}_n^* operator too, [23, Theorem 3.7].

Lemma 6.2 ([29]). If $\{T_n\} \subset L(H)$ and $T \in L(H)$ are such that T_n converges, according to the operator norm topology to T, then $iso\sigma(T) \subseteq \liminf_{n \to \infty} \sigma(T_n)$.

Theorem 6.3. The spectrum σ is continuous on the set of k-quasi class \mathcal{A}_n^* for a positive integer k.

Proof. Let $\{T_n\}$ be a sequence of operators so that it belongs to k-quasi class \mathcal{A}_n^* operators and $\lim_{n\to\infty} \|T_n - T\| = 0$, where T is a k-quasi class \mathcal{A}_n^* operator. Since the function σ is upper semi-continuous, $\limsup_{n\to\infty} \sigma(T_n) \subset \sigma(T)$. Therefore, to prove the theorem, it will be sufficient to prove that $\sigma(T) \subset \liminf_{n\to\infty} \sigma(T_n)$. From [38, Proposition 4.9] it will be sufficient to prove $\sigma_a(T) \subset \liminf_{n\to\infty} \sigma(T_n)$. Since $\sigma(T) = \sigma(T^0)$, $\sigma(T_n) = \sigma(T^0)$ and $\sigma_a(T) = \sigma_a(T^0)$ we have

$$\sigma_a(T) \subset \liminf_{n \to \infty} \sigma(T_n) \Longleftrightarrow \sigma_a(T^0) \subset \liminf_{n \to \infty} \sigma(T_n^0).$$

Let $\lambda \in \sigma_a(T^0)$. Then $\lambda \in \sigma_p(T^0)$. By [23, Theorem 3.5] T^0 has a representation

$$T^0 = \lambda \oplus A$$
 on $H = \ker(T^0 - \lambda) \oplus (\ker(T^0 - \lambda))^{\perp}$ and $\ker(A - \lambda) = \{0\}$.

Therefore $A-\lambda$ is an upper semi-Fredholm operator and $\alpha(A-\lambda)=0$. There exists an $\epsilon>0$ such that $A-(\lambda-\mu_0)$ is an upper semi-Fredholm operator with $\operatorname{ind}(A-(\lambda-\mu_0))=\operatorname{ind}(A-\lambda)$ and $\alpha(A-(\lambda-\mu_0))=0$ for every μ_0 such that $0<|\mu_0|<\epsilon$. Let's set $\mu=\lambda-\mu_0$, and we have $T^0-\mu=(\lambda-\mu)\oplus(A-\mu)$ is upper semi-Fredholm operator, $\operatorname{ind}(T^0-\mu)=\operatorname{ind}(A-\mu)$ and $\alpha(T^0-\mu)=0$.

Suppose the contrary, $\lambda \not\in \liminf_{n \to \infty} \sigma(T_n^0)$. Then, there exists a $\delta > 0$, a neighborhood $\mathcal{D}_{\delta}(\lambda)$ of λ and a subsequence $\{T_{n_k}^0\}$ of $\{T_n^0\}$ such that $\sigma(T_{n_k}^0) \cap \mathcal{D}_{\delta}(\lambda) = \emptyset$ for every $k \geq 1$. This implies that $T_{n_k}^0 - \mu$ is a Fredholm operator and $\operatorname{ind}(T_{n_k}^0 - \mu) = 0$ for every $\mu \in \mathcal{D}_{\delta}(\lambda)$ and

$$\lim_{n \to \infty} \| (T_{n_k}^0 - \mu) - (T^0 - \mu) \| = 0.$$

It follows from the continuity of the index that $\operatorname{ind}(T^0 - \mu) = 0$ and $T^0 - \mu$ is a Fredholm operator. Since $\alpha(T^0 - \mu) = 0$, $\mu \notin \sigma(T^0)$ for every μ in a ϵ -neighborhood of λ . This contradicts Lemma 6.2, therefore we must have $\lambda \in \liminf_{n \to \infty} \sigma(T_n^0)$.

Corollary 6.4. The spectrum σ_w is continuous on the set of a k-quasi class \mathcal{A}_n^* for a positive integer k.

Proof. Since Weyl's theorem holds for k-quasi class \mathcal{A}_n^* operators, then σ_w is continuous from Theorem 6.3 and [12, Theorem 2.1].

Corollary 6.5. The spectrum σ_b is continuous on the set of a k-quasi class \mathcal{A}_n^* for a positive integer k.

Proof. Since Weyl's theorem holds for k-quasi class \mathcal{A}_n^* operators, then σ_b is continuous from Theorem 6.3 and [12, Theorem 2.2].

Acknowledgment. Authors would like to thank referee for valuable comments given in the paper.

References

- P. Aiena, Semi-Fredholm Operators, Perturbations Theory and Localized SVEP, Merida, Venezuela, 2007.
- [2] P. Aiena, E. Aponte, and E. Bazan, Weyl type theorems for left and right polaroid operators, Integral Equations Operator Theory 66 (2010), no. 1, 1–20.
- [3] A. Aluthge, On p-hyponormal operators for 0 , Integral Equations Operator Theory 13 (1990), no. 3, 307–315.
- [4] T. Ando, Operators with a norm condition, Acta Sci. Math. (Szeged), 33 (1972), 169–178.
- [5] S. C. Arora and J. K. Thukral, On a class of operators, Glas. Math. Ser. III21(41) (1986), no. 2, 381–386.
- [6] S. K. Berberian, Note on a theorem of Fuglede and Putnam, Proc. Amer. Math. Soc. 10 (1959), 175–182.
- [7] ______, Approximate proper vectors, Proc. Amer. Math. Soc. 13 (1962), 111–114.
- [8] A. Brown and C. Pearcy, Spectra of tensor products of operators, Proc. Amer. Math. Soc. 17 (1966), 162–166.
- [9] C. A. Mc Carthy, Cp, Israel J. Math. 5 (1967), 249–271.
- [10] J. B. Conway, A Course in Functional Analysis, Second Edition, Springer-Verlag, New York, 1990.
- [11] S. V. Djordjević, Continuity of the essential spectrum in the class of quasihyponormal operators, Mat. Vesnik 50 (1998), no. 3-4, 71-74.
- [12] S. V. Djordjević and D. S. Djordjević, Weyl's theorems, continuity of the spectrum and quasihyponormal operators, Acta Sci. Math. (Szeged) 64 (1998), no. 1-2, 259-269.
- [13] B. P. Duggal, I. H. Jeon, and I. H. Kim, On *-paranormal contractions and properties for *-class A operators, Linear Algebra Appl. 436 (2012), no. 5, 954–962.
- [14] ______, Continuity of the spectrum on a class of upper triangular operator matrices, J. Math. Anal. Appl. 370 (2010), no. 2, 584–587.
- [15] B. Fuglede, A Commutativity theorem for normal operator, Proc. Natl. Acad. Sci. USA 36 (1950), 35–40.
- [16] T. Furuta, On the class of paranormal operators, Proc. Japan Acad. 43 (1967), 594–598.
- [17] ______, An extension of the Fuglede-Putnam theorem to subnormal operators using a Hilbert-Schmidt norm inequality, Proc. Amer. Math. Soc. 81 (1981), no. 2, 240–242.
- [18] T. Furuta, M. Ito, and T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several related classes, Sci. Math. 1 (1998), no. 3, 389–403.
- [19] F. Gao and X. C. Fang, Generalized Weyl's theorem and spectral continuity for quasiclass (A, k) operators, Acta Sci. Math. (Szeged) 78 (2012), no. 1-2, 241–250.
- [20] F. Gao and X. Li, Tensor products and the spectral continuity for k-quasi-*-class A Operators, Banach J. Math. Anal. 8 (2014), no. 1, 47–54.
- [21] P. R. Halmos, A Hilbert Space Problem Book, Springer-Verlag, New York, 1982.
- [22] I. S. Hwang and W. Y. Lee, The spectrum is continuous on the set of p-hyponormal operators, Math. Z. 235 (2000), no. 1, 151–157.
- [23] I. Hoxha and N. L. Braha, On k-quasi class \mathcal{A}_n^* operators, Bull. Math. Anal. Appl. 6 (2014), no. 1, 23–33.

- [24] I. H. Kim, Weyl's theorem and tensor product for operators satisfying $T^{*k}|T^2|T^k \geq T^{*k}|T|^2T^k$, J. Korean Math. Soc. 47 (2010), no. 2, 351–361.
- [25] R. Lange and S. Wang, New Approaches in Spectral Decomposition, Contemp. Math. 128, Amer. Math. Society, 1992.
- [26] K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, The Clarendon Press, Oxford University Press, New York, 2000.
- [27] W. Y. Lee and S. H. Lee, A spectral mapping theorem for the Weyl spectrum, Glasgow Math. J. 38 (1996), no. 1, 61–64.
- [28] S. Mecheri and A. Uchiyama, An extension of the Fuglede-Putnam's theorem to class A operators, Math. Inequal. Appl. 13 (2010), no. 1, 57–61.
- [29] J. D. Newburgh, The variation of Spectra, Duke Math. J. 18 (1951), 165–176.
- [30] S. Panayappan, N. Jayanthi, and D. Sumathi, Weyl's theorem and tensor product for class A_k operators, Pure Mathematical Sciences 1 (2012), no. 1, 13–23.
- [31] ______, Weyl's theorem and tensor product for quasi class A_k operators, Pure Mathematical Sciences 1 (2012), no. 1, 33–41.
- [32] C. R. Putnam, On normal operators in Hilbert space, Amer. J. Math. 73 (1951), 357–362.
- [33] V. Rakocević, Approximate point spectrum and commuting compact perturbations, Glasgow Math. J. 28 (1986), no. 2, 193–198.
- [34] M. H. M. Rashid and M. S. M. Noorani, On relaxation normality in the Fuglede-Putnam's theorem for a quasi-class A operators, Tamkang. J. Math. 40 (2009), no. 3, 307-312
- [35] M. Rosenblum, On the operator equation BX XA = Q, Duke Math. J. 23 (1956), 263-269
- [36] C. S. Ryoo and P. Y. Sik, k^* -paranormal operators, Pusan Kyongnam Math. J. **11** (1995), no. 2, 243–248.
- [37] T. Saito, Hyponormal Operators and Related Topics, Lecture notes in Mathematics, 247, Springer-Verlag, 1971.
- [38] S. Sanchez-Perales and V. A. Cruz-Barriguete, Continuity of approximate point spectrum on the algebra B(X), Commun. Korean Math. Soc. 28 (2013), no. 3, 487–500.
- [39] J. L. Shen, F. Zuo, and C. S. Yang, On operators satisfying $T^*|T^2|T \ge T^*|T^*|^2T$, Acta Math. Sin. (Engl. Ser.) **26** (2010), no. 11, 2109–2116.
- [40] J. Stochel, Seminormality of operators from their tensor products, Proc. Amer. Math. 124 (1996), no. 1, 435–440.
- [41] A. Uchiyama and K. Tanahashi, Fuglede-Putnam's theorem for p-hyponormal or loghyponormal operators, Glasgow Math. J. 44 (2002), no. 3, 397–410.
- [42] J. Yuan and Z. Gao, Weyl spectrum of class A(n) and n-paranormal operators, Integr. Equ. Oper. Theory 60 (2008), no. 2, 289–298.
- [43] Q. Zeng and H. Zhong, On~(n,k)-quasi-*-paranormal operators, arXiv 1209.5050v1 [math. FA], 2012.

Іьмі Нохна

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES

University of Prishtina

AVENUE "MOTHER THERESA" 5, PRISHTINË, 10000, KOSOVA

E-mail address: ilmihoxha011@gmail.com

NAIM LATIF BRAHA

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES

University of Prishtina

Avenue "Mother Theresa" 5, Prishtinë, 10000, Kosova

 $E ext{-}mail\ address: nbraha@yahoo.com}$