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THE GENERALIZED NORMAL STATE SPACE AND
UNITAL NORMAL COMPLETELY POSITIVE MAP

SA GE LEE

ABSTRACT. By introducing the notion of a generalized normal state
space, we give a necessary and sufficient conditicn for that there
exists a unital normal completely positive map from a von Neu-
mann algebra into another, in terms of their generalized normal
state spaces.

1. Introduction

The generalized normal state space of a von Neumann algebra will
be defined as the analog of the generalized state space of a unital C*-
algebra ([19] Definition 1.1). The main result is Theorem 3.2 that gives
us a necessary and sufficient condition for the existence of a unital
normal completely positive map from a von Neumann algebra into
another, in terms of their generalized normal state spaces.

In this introductory section, we will explain the notations that will
be frequently in use and define the generalized normal state space of a
von Neumann algebra (Definition 1.1).

Section 2 provides us the matrix-valued functicnal representation of
a von Neumann algebra, employing its generalized normal state space
(Theorem 2.5). Our main theorem (Theorem 3.2) in Section 3 relies
heavily on Theorem 2.5.

For any von Neumann algebra M, Hilbert space H and positive
integer n, we shall use the following notation.
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= the unit of M.

the set of hermitian elements of M.

the set of positive elements of M.

the normed dual space of M, where we regard M

as a Banach space.

the real normed space of bounded hermitian linear
functionals on M.

the positive cone of positive linear functionals on M.
the normed predual space of M.

the real normed space of hermition elements of M,.

the positive cone of positive linear functionals in (M,)y,
L.e. the cone of normal positive linear functionals on M.

the direct sum Hilbert space of n copies of H.

= the von Neumann algebra of (bounded linear) operators

on H.

the C* — algebra of n x n complex matrices for the
elements of B(®"C), with respect to the standard
orthonormal basis of @™ C.

We identify M,, with the von Neumann algebra B(@"C)).
the unit matrix of M,,.

the von Neumann algebra of n x n matrices with entries
taken from M.

the unit of M, (M).

the von Neumann algebra of the second norm dual space
of M.

the von Neumann algebra of n x n matrices with entries
taken from M™".

the normed space of n x n matries with entries taken
from M™, equipped with the norm with respect to the
natural pairing of M,,(M*) and M,,(M).
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M,.(M,) = the normed space of n x n matrices with entries taken
M., from equipped with the norm with respect to the
natural pairing M, M,) and M, (M).

If® = [pij]l1<ij<n € Mp(M*), we may regard d as a bounded linear
map from M into M, by declaring

(1.1) ®(z) = ¢ij(x))1<ij<n-

Conversely, any bounded linear map from M into M, is given by
an element & = [pi;]1<ij<n € Mn(M*). By the norm ||®| of & =
[ijli<i,j<n € Mn(M*), we mean the supremum norm of ® as a bounded
linear map from M into M,,.

Similarly we may regard M,(M.,) as the Banach space of all (o-
weak)-(0-weak) continuous linear maps @ from M into M,,, equipped
with norm [[®[| = sup <1 [|®(x)|. Tt is well-known that M, (M,) is a
closed subspace of M,,(M*).

Furthermore M, (M™*) is a M,-bimodule, by defining A®, A\ €
Mn(M*>, for A = [)\ij]lgi,jgn < A“!n, d = [(pij] S /\Jn(M*), as (/\<I>)(:c) =
A®(xr) € My, (PA)(z) = B(z)\ € M,, where 2 € M. In this case, it is
clear that M, (M.,) is a submodule of the M,,-bimodule M, (M*).

Finally, we put

M = the topological direct sum of {M,, : n € N} : As a set
this is the disjoint union | J,,cn Mp, and a subset of M is open
if and only if its intersection with M,, is open in M,,, for each
n € N.

DEFINITION 1.1. (cf. [16] p+437). Let n € N and & = [p;;] €
M, (M,). Then ® is called a normal n-positive linear functional on
M, if @ is a completely positive map from M into M,,. Note that ®
is automatically (o-weak)-(o-weak) continuous, since ¢;; € M, for all
i,7 € {1,...,n}. If, in particular, & is unital, i.e., ®(15s) = 1,,, then &
is called a normal n-state of M. The set A,,(M) of the normal n-states
of M, equipped with the metric unduced from the norm on M, (M*)
is called the normal n-state space of M. The topclogical direct sum of
all these V,,(M) (n € N) is called the generalized normal state space of
M, which will be denoted by A/(A!). Thus a subsct of N (M) is open if
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and only if its intersection with each A,(M) (n € N) is an open subset
of N (M).

Our definition of a normal n-state & = [¢;;]i<; j<n differs from
that of A. Kaplan ([16] p.437, p.444 Proposition 2 6) in the sense that
we assume ¢;;(1a) = 0 whenever 7 # j, not just because of o-weak
continuity.

It is clear that NV,,(M) is a norm closed conves: subset of M, (M,)
for every n ¢ N.

A representation 7 of a von Neumann algebra M on a Hilbert space
H will be called normalif it is (o-weak)-(o-weak) continuous as a map
from M into B(H). The following analog of Kaplan’s results ([16] p.439
Theorem 2.1, p.444 Proposition 2.6) together with the uniqueness up
to unitary transformation ([15] p.43 Theorem 3.2) can be easily verified
and hence the proofs are omitted.

PROPOSITION AND DEFINITION 1.2. Let n € N and M be a von
Neumann algebra. If & = [p;;] € M, (M,) is a normal n-positive linear
functional on M, then there exists a triple (H,m,(& : 1 < i < n)),
where 7 is a unital normal representation of M on a Hilbert space H
and (& : 1 <7 < n) is an n-tuple of vectors in H such that

(1.2) wij(z) = 7(x)§5,&)
forallz e M,1<14,j<n.

Such a triple (H,m,(& : 1 < ¢ < n)), satisfying (1.2) is called a
Kaplan’s triple for ®. One can always find a Kaplan’s triple (H, 7, (&; :
1 < < n)) for ® such that the closed linear span [r(z)¢; :z € M, 1 <
i < n]of {m(x)§; :x € M, 1 <i< n} is the whole H, by considering
the subrepresentation of 7 restricted to [w(z)§; : v € M, 1 < ¢ < n].
When H = [n(z){; : x € M, 1 < ¢ < n], the Kaplan’s triple (H,, (&; :
1 <t < n)) for & will be called nondegenerate.

If(H,m,(& 1 <i<mn), (Ko, (m : 1 <i < n)) are nondegener-
ate Kaplan’s triples for a normal ri-positive linear functional ® on M,
then there exists a unique unitary transformation U from H onto K
transforming 7 to ¢ and sending €, ton; (1 <1 < n), ie.,

(1.3) Urn(z)U” =o(z)., forall ze M,
Ut =mn;, forall 1=1,...,n.
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2. Functional Representation of a von Neumann Algebra

Let M be a von Neumann algebra. By the normal state space we
mean the normal 1-state space Aj(M) that will be sometimes abbre-
viated by M.

Recall that a complex valued function f on A is called affine if

(21) FOe = (L= N) = Af(p) + (1= ) f(¥)

whenever A € [0,1] and p, v € N.

By A(N7) we denote the linexr space of complex valued bounded
continuous affine functions on Aj. The norm | f|| of f € A(N) is
defined by

(2.2) [ fll = sup{|/(©)] : ¢ € M1 }.

Then, it is not hard to see that A(N7) is a Banach space with respect
to this norm.

Define a map A : M — A(N7) by sending z € M to A(x) € AN),
where

(2.3) Az)(o) = ¢(z)

for each x € M and all ¢ € N.

Let Ag(N1) denote that R-linear space of real valued functions f be-
longing to A(N7). Clearly Ag(N}) is a real Banach space with respect
to the norm defined in (2.2). Furthermore, it is also a real ordered
vector space ([23] p.2). The following is an analog of the Kadison’s
function representation ([22] p.70 Theorem 3.10.3), of which proof can
be adopted with a slight modification to verify cur version. We shall
omit the proof.

LeEMMA 2.1. (i) The map A : M — A(N)) detined in (2.3) is surje-
cive and

(2.4 Szl < @) <

for all z € M.
(i1) A|My, : M), — Ag(N7) is an R-linear order isomorphism from
M;, onto Ag(N7).
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DEFINITION 2.2. Let n € N. The normal n-state space No(M) and
the generalized normal state space A'(M) of a von Neumann algebra
M will be abbreviated by A,, and A respectively.

A map F : N;, — M, is called operator affine, if for any r € N and
any r-tuple (A4, : 1 <14 < r) of matrices 4; € M,, such that

(2.5) S A4 =1, e M,

=1

one has that

(2.6) ZA D A;) \"A TF(®)A; € M,
_~1

for all ® € N,,.

A map F: N — M is called operator affine, if F(N,) C M, and
F|N, : N, — M, is operator affine for every n € N.

If n <m (n,m S N), b = [‘pijhﬁl}jﬁm i~ Mm€:M*), we call &, =
[pijli<ij<n € Mn(M,) the nth compression of . Similarly, if A =
Aijhi<ij<n € Mpy, wecall A, = [Aijli<ij<n € My, the nth compression
of \. Amap F: N — M is called hereditary if F (Nn) C M, for every
n € N and F(®,) = F(®),, for each ® € N, and every n € N with
n < m.

Now let N be another von Neumann algebra and © : M(N) —
N(M) be a mapping. Then © is called operator affine, if O(N,(N)) C
Nn(M) for every n € N, and if for every r € N and any r-tuple (A; :
1 <4 < r) of matrices A; € M, such that (2.5) is satisfied, one has
that

(2.7) ZA D A;) ZA*(-)((I))A,

for every ® € M, (N) and every n - N.
A map © : N(N) — N(M) is called hereditary if for any pair n,
m € N with n < m, one has that

(2.8) O(Nm(N)) C N (M)
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and

O(P|Nn(N)) = O(D),
for every ® € A, (V).

Recall that AV denotes A (M). Let F : N/ — M be a map such that
F(Ny,) C M, for every n € N. It is called bounded if the quantity ||F||
defined (2.9) below is finite, and in that case || F|| is called the norm of
F:

(2.9) [£]] = sup{| #(2)]| : @ € N}

Let Car denote the set of all bounded, operaior affine, hereditary
continuous maps F' : N(M) — M. It is not hard to see that Cps is a
Banach space over C. We can define an involution * on Cys by

(2.10) F*(3) = F(3)",

for every ® € N(M).
As the natural extension of A in (2.3), we now define the map A,y :
M — Cp by

(2.11) Aum(z)(®) = [pi;(2)] € M (C M)

whenever ® € A and ® € M,, for some n € N, for all z € M.

It is immediate to see that Aps{z) € Cps for each z € M. The main
result of this section, Theorem 2.5, in fact, asserts that Ay : M — Cpy
is surjective. To prove Theorem 2.5, we need to define an ordered vector

space over C, mimicking the usual definition of an ordered vector space
over R ([23] p.2).

DEFINITION 2.3. Let C be a complex vector space and < be a partial
order on C. We say that C is an ordered vector space, with respect to
the partial order <, if the following conditions (2.12) and (2.13) are
satisfied, for any pair F,G € C such that F < G.

(2.12) F+H<G+H forall HeC(C,
and

(2.13) tF <tG, forall tej0,00)
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In this case, the set C* defined by
(2.14) Ct={FecC:F>0},

where 0 is the zero element of C, is called the positive cone of C.

Let {F, : a € A} be an indexed subset of C*. An element F € C*t
is called the least upperbound of {F,, : « € A} and denoted by lub{F,, :
a € A} if the following conditions (i) and (ii) are satisfied.

(i) F, < F for all a € A.

(ii) Whenever G € C* satisfies that F, < @ for all o € A, then
F <G,

Note that lub{F,, : @ € A} is uniquely determined, once it exists. An
ordered vector space (C, <) over ( is called a complete ordered vector
space if for every increasing net {¥, : @ € A} in CT, lub{F, : a € A}
exists as an element of C.

Let (C, <) and (D, <) be two ordered vector spaces over C. Then
a linear mapping v from C into D is called an order preserving if the
following holds: For F,G € C, if F' < G, then v(F) < v(G). A linear
isomorphism « from C onto D is called an order isomorphism if both ~
and v~ ! are order preserving.

Finally, let v be a linear mapping from a complete ordered vector
space (C, <) into another (D, <). Then 7 is called normal, if it is order
preserving and

(2.15) Y(lub{F, : a € A}) = lub{y(F,) : a € A},

whenever {F,, : « € A} is an increasing net in C*.

DEFINITION 2.4. Let M be a von Neumann aigebra. We equip M
with the order < by declaring z < yify—z € M, (z,y € M). Also we
equip Cps with the order < by declaring F < G if G(®)—F(®) € (M,)+
whenever ® € N(M), & € N,,(M), for some n € N.

By the following theorem and Lemma 2.1, one can immediately ver-
ify that Cps as well as M is a comiplete ordered vector space over C.
The identity element 1¢ of Cps is defined as the element of Cp; such
that 1¢c(®) = 1,, for every & € M(M) whenever & € N, (M) for some
n & N.
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THEOREM 2.5. Let M be a von Neumann algebra. Then the map
Ap : M — Cpy defined by (2.11) is a *-preserving linear isometry from
M onto Cpy, sending 1) to 1¢ such that both Ap and A;,l are normal.

Proof. We have already noted that Ay (M) < Car. To get the re-
verse inclusion let F' € Cps. For each n € N, defire

(2.16) Fo=FN, N,(M) — M,

where N,, denotes N,,(M).

Thus, when n = 1, we have
(2.17) Fy e My

By Lemma 2.1, there exists a unique element .r € M such that
(2.18) Fi(e) =¢(z) forall ¢eN.

We will show that
(2.19) F=Ap(z).

For this, it suffices to verify that for every n € N and every & =
[@ij]1<i,j<n, one has

(2.20) An(2)(®) = F(B) € M,
(2.21) [(Pij(x)hﬁi,jﬁ"l == F((I)) e M,

Fixing n € N and @ € A, let us write F(®) ir the matrix form:
(2.22) F(®) = [Aij 1<ij<n € M,,.
It suffices to show that

(2.23) Aij = pij(T),
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for every ¢,7 € {1,...,n}. We will first show that
(2.24) A = en(z).

The 1st compression ®; of ® is ¢1; and the 1st compression F(®);
of F(®) is Ay;. Since F is hereditary,

A= F(®)1 = Fi(®1) = Fi(pn1) = p11(x)

by (2.18). Hence (2.24) holds.
Next, we will show that

(2.25) Aii = pi(x) for every i€ {1,...,n}.

To see this let u;; denote the permutation matrix belonging to M,,
interchanging the ith row and jth row of 1,,(¢ M,,) with each other.
By (2.7) with r = 1, we get

for each i € {1,...,n}. This proves (2.25).

Now for every pair k,I € {1,...,n}, let ey denote the element of
M,, with 1 at (k,l)-entry and zeros elsewhere. When k # [, (k,l €
{1,...,n}), let us fix these k and ! temporarily and define v,w € M,,
by

(2.26) { o
w =

On can easily verify that

(eu + ext),

e — iekl).

S S

(2.27) v’y =w'w =e; and
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v+ Z enei, = ww + Z €€
(2.28) i#£l il
=1, € M,,.
Also, it is not hard to see that

v v + Z e e,

il
(2.29) = diag(e11,.. ., 01141,
1
—2-((;)” -+ Ckik -+ Yk + <Plk)u Plt1,i+15 - - - 7‘Pn,n)
and
w*dw + Z el Pe;;
il
(2.30) = diag(p11,-.., 0214 1,

1

5(@11 + wkk + (ke — oix)), Cl-1,0141s -+ -, Pnn),

where diag(p1, 2, .., ¢, ) denotes the element

1 @

2 \
(01,902, 0n & NI(M)).

O ©n

247

We evaluate both sides of (2.29) and (2.30) by F. From the fact

that F’ is operator affine and (2.25), we get the following.

(2.31)
vV F(®)v + Z e F(®)e;;
il

. 1
= diag(e11 (), ..., @r-10-1(2), = (pu(z) + Ork(T) + () + ori(z)),

2
<Pl+1,l+1($)a EY Lpnn(l')),
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and
(2.32)
w F(®)w + Z e; F(®)ey
oy
= diag(¢11(x), ..., @1-11-1(x), %(‘Pll(-’b‘) + orr(x) + i(r(z) — o)),
‘Pk+l,k+1(-’r), s ﬁpnn(x))’

where diag(A1, Az,...,A,) denotes the diagonal matrix in M,, with
the diagonal entries A1, Az, ..., A (€ C).

By (2.22), we can rewrite the left hand sides of (2.31) and (2.32) as
follows just as the way how we obtained the right hand sides of (2.29)
and (2.30) from the left hand sides of them respectively, i.e.,

X 1
diag(A11,-. -, Adi—1,0-1, 5()\11 + Ak + A+ Aik),

/\l+1’l+1, e ,Ann), and

) 1 )
diag(A11,.. ., Ai—1,0-1, 5()\“ + Ak + H Akt — Ak)) Nt 1,0415 - - -5 Ann)-

Because these two expressions are equal to the right hand sides of (2.31)
and (2.32) respectively, we can deduce that

(2.33) At Akk + A+ A = g&u(l‘) + ork(z) 4 pri(x) + (puc(x)
and

(2.34) A+ Agk + i()\kl — /\lk) = (p”(l‘) + cpkk(x) + i((pkl(.r) — (,le(a?)).

By aid of (2.25), we can solve the above simultaneous equations
(2.33) and (2.34) to obtain that Ay = ¢ri(z) for all k,1 € {1,...,n},
proving (2.23) i.e., that (2.21) holds.

Since the element x € M depends only on F' € Cps, but not on the
way how we choose ® € N (M), we see that Ay is indeed surjective.
It is routine, and in fact well known that M is an ordered vector space
over C. Also it is easy to verify that Ap; is order preserving. Then
the surjectivity of Aj; can be used to prove that C. is also a complete
ordered vector space over C and that both Aps and AX/,I are normal.
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The fact that Ap; is isometric can be proven by a modification of
Theorem 4.7 ([25] p.1054). We shall omit the easy verification for the
fact that Apr(1ar) = 1c and Ay z*) = (Ap(z))" for every z € M. O

From the above Theorem 2.5 every element F' € Cps turns out to
be necessarily bounded.

3. Unital Normal Completely Positive Map

To prove the main result, Theorem 3.2, we have to know about
the functorial property of the generalized normal state spaces of von
Neumann algebras.

Let © : N(N) — N(M) be a continuous, operator affine, hereditary
map, where M and N are von Neumann algebras. Then it is clear that
we can define a map © : Cpy — Cy by

(3.1) O(F)=Fo® (compositior)

for all ' € Cps. Furthermore, O is linear and x-preserving, and sends
the unit of Cps to the unit of Cy, i.e. unital, whose easy proofs will be
omitted. But among the properties of @ we novw prove the normality
(Definition 2.3) of ©.

LEMMA 3.1. If© : N(N) — N(M) is a contiruous, operator affine,
hereditary map, then © is normal.

Proof. Let {F, : a € A} be an increasing net i1 C;, having lub{F, :
a € A} = F € Cf;. Then, obviously {F,0© : a = A} is an increasing
net in Cj; such that

(3.2) F,o®<Fo®

for all @ € A, by Definition 2.4. Since Cy is a coraplete ordered vector
space over C as we have observed just before Theorem 2.5, there exists
the least upper bound G € Cf; of {F, 0© : a € A}. Thus, by the
definition of a least upper bound. we have

(3.3) G<Foo.
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To get the reverse inequality, let y € N, z4 € M. be such that
(3.4) G=An(y), Fu = Am(Za),

which is possible by Theorem 2.5.
Since G is an upper bound of {F, 0@ : a € A}, we get

(3.5) Ap(zo) 0 © < An(y)
for all @ € A. Consequently, for every ¥ € N (N), we have
Ar(2a)(O(Y) < An(y)(P)
ie.
(3.6) O(¥)(z.) < ¥(y)
for every a € A.
Put z = lub{z, : @ € A} € M. As we know that Ay : M — Cuy
is normal, by Theorem 2.5, we have
(3.7) F=Aym(z),

since F' = lub{F, : a € A} in Cyp,.
Thus, for our desired inequality F o © < G, it suffices to show that

(3.8) (Am(z) 0 ©)(¥) < An(y)(¥)
for every ¥ € A(N).

lLe.,
(3.9) O(¥)(z) < ¥(y)

for every ¥ € N(N).
From (3.6), (3.9) will be fulfilled if we can show

(3.10) O(¥)(z) = lub{O(¥)(z4) : a € £}

in My, whenever ¥ € A(N) and ¥ € N,,(N) for some n € N.
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By assuming ¥ € NM(N) and ¥ € N,(N) for some n € N, (3.10)
will be fulfilled if we can show

(3.11) O(z) = lub{P(z,) : ¢ € A}

in My, for every & € A, (M). But this last (3 11) is obvious as we
have assumed that each ® € N,(M) is (s-weak)-(o-weak) continuous
(Definition 1.1) and {z, : « € A} is well-knowr to converge to z o-
weakly ([28] p.39). Hence we can conclude thet F 0 © < (. This
together with (3.3) now says that G = Fo©,ie. G = O(F). We thus
have shown that lub{©(F,) : a ¢ A} = O(lub{}, : a € A}), proving
© is normal. O

THEOREM 3.2. Let M, N be von Neumann aigebras. Assume that
(3.10) O : N(N) - N(M)

is a continuous, operator affine, hereditary map. If we define a linear
maprm: M — N by

(3.11) T=A0O0Ay (compositions),

then m is a unital normal completely positive map from M into N.
7 has the following properties {i) and (ii).
(i) For each ¥ = [v;;]1<i,j<n € N(N) if we put

(3.12) ® = [pijli<ij<n = O(¥) € N(M),

then we have

(3.13) wij(x) = ¥i;(n(z)),

for every i,j € {1,...,n} and all £ € M.
(ii) Let 6 : N, — M, be the bounded linear map such that

(3.14) 7 =6 (the adjoint of ).
Then, we have

(3.15) wij = 0(i5)
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for every pair t,7 € {1,...,n}.

Conversely, let m be a unital normal completely positive (linear) map
from M into N. Let 8 : N, — M, be defined as in (3.14) above. Then
the map © : N(N) — N(M) sending every ¥ = [9;;]1<; j<n € N(N)
to O(¥) = ® = [pi;]1<i,j<n, Where @;; is defined by (3.15) above is a
continuous, operator affine, hereditary map from N'(N) into N'(M).

Finally, when © and 7 are related as above, we have

(ii) © : N(N) — N(M) is injective if and only if 7 is surjective.

(iv) © : N(N) — N(M) is surjective if and only if 7 is injective.

Proof. The fact that # : M — N is a unital normal completely
positive map from M into N follows from (3.11), Theorem 2.5 and
Lemma 3.1.

We will verify (3.13) in (i). Then, (3.15) in (ii) follows from (3.13).
To verify (3.13) in (i), let z € M. From (3.11), we have

(3.16) O(Aum(z)) = An(m(=)),

and from (3.1) with F' = Ay (z), we get

(3.17) O(Ap(x)) == Apr(z) 0 ©
By comparing (3.16) and (3.17) we get

(3.18) Ap(m(z)) = Aps(z) 0 ©.

Foreach ¥ = W)ijhﬁi,jﬁn S ML<N\), we put D = [@ijhﬁi‘jﬁn = @(‘I/) S
N, (M). Then, by evaluating both sides of (3.18) at ¥, we have

(3.19) U(n(z) = ®(z).

This is exactly (3.13) in (i) that we wanted to verify.

Now, let us show that 7 : M — N in (3.11) is completely positive.
So, let n € N and [z;]i<ij<n € Mn(M)4 be taken arbitrarily. We
have to show

(3.20) m(@i)hi<ijen € Mn(N)y-
This will be fulfilled, if we can show that, for any f € (M, (N).)4

(3.21) f([m(zij)l1<ii<n) 2 0.

7
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From the obvious analog of Theorem 5.1 ([21] p.64. Also see Proposi-
tion 1.1 [16] p.438), it suffices to show that, for every normal completely
positive map ¥’ = [wéjhg,;)an N — M,

J

(3.22) > (m(zy) >

1<i,5<n

On the other hand, by Lemma 9.5 ([27] p.120), there exists a unital
completely positive map ¥ : N — M,,, i.e., ¥(1,) = 1,,, such that

(3.23) V(y) = ¥/ (1)V 2P (y) ¥’ (1)Y/2

for every y € N.

If we regard M,, as B(®"C), and put F as the range projection
of the operator ¥/(1)/2 € B(g@"C), the above (3.23) says that ¥’
is also considered as a normal completely positive map from N into
B(E(&"C)). Because the range 12(®"C) of ¥/(111/? reduces ¥'(1)!/2,
and ¥'(1)1/2|E(a"C) is exactly (W' (1)|E(e™C))! ? where ¥’(1)|E(#"C)
is the restriction of ¥/(1) to E(¢p"C), we may assume that, without
loss of generality, ¥/(1) and hence (¥/(1))!/? is an invertible operator
on @"C. Then from (3.23), we get

(324) ¥(y) = \I}'(l)“(»*/2)\1,’(y)\1,/(1)-»~1/2)

for every y € N.

This (3.24) says that ¥ is normal, just as ¥’ is (Definition 1.1).
Thus, in (3.23), we can take a unital completely positive map ¥ : N —
M, that is also normal, i.e., ¥ € A, (N).

We put

(3.25) A= [al]}15 j<n = W/(1)1/2
(3.26) = [visl1<ij<n

n (3.23). Then

(3.27) Vi) = D aiptpe(v)ag

1<p.g<n
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for every y € N.
To verify (3.22), let us now compute

Z d)z] -1'1.] - Z ( Z aipwpq(”r(xij))aqj

1<4,5<n 1<2,5<n 1<p,g<n

(3.28) = L Ppq(T Z QipTijag;))

1<p,g<n 1<4,5<n
= Y Upe(n( > Gpzia))

1<p,q<n 1<i,5<n

since A* = A. If we put

(329) B = [bij]lgi,jgny where

(3.30) bi; = d;; (the complex conjugate of a;;)

for 4,7 € {1,...,n}, then it is easy to see that B € (M,),, since
A € (My)+. Now from (3.28) we get

(3.31) Z 1/)13 (z45)) L Ypg(T Z bpiijbg;)).

1<i,5<n 1<p,g<n 1<i,5<n
By putting
(3.32) Zpg = Z bpiijbq;
1<ij<n

where p,q € {1,...,n}, we see that [zpq]i<pq<n € Myn(M)4, since
B € (My)+ and [z;5]1<i,j<n € Mn(M),. Then frora (3.31) and (3.13)
we have

(333) Z 1/)1] ng Z ¢pq(7r Pq
1<4,5<n 1<p,g<n
= Z ©pq(2pq)
1<p.q<n
> 0,

by virtue of the obvious analog of Theorem 5.1 ([21] p.64) mentioned
above. This verifies (3.22) as desired, showing that 7 is completely
positive.
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We omit the converse part of the assertion, which can be verified
easily.

To prove (iii) and (iv), let m and @ be relatec as above. Then one
can immediately verify that © is injective (respectively, surjective) if
and only if ¢ is injective (respectively, surjective). Now (iii) and (iv)
follow from the dualities in the Banach spaces ([24] pp.92-97). O

COROLLARY 3.3. If© : N(N) — N(M) is a one to one continuous
operator affine, hereditary map such that ©~' : N (M) — N(N) is
also a continuous operator affine, hereditary map, then r in Theorem
is an isomorphism from M onto N as a morphisrn between *-algebras.
The converse is trivially ture.

Proof. This is clear from Theorem 3.2 and a result of M. D. Choi
([3] p.570 Corollary 3.2). O
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