J. Appl. Math. & Informatics Vol. 30(2012), No. 1 - 2, pp. 27 - 47
Website: http://www.kcam.biz

SPECTRAL ANALYSIS OF THE INTEGRAL OPERATOR
ARISING FROM THE BEAM DEFLECTION PROBLEM ON
ELASTIC FOUNDATION I: POSITIVENESS AND
CONTRACTIVENESS'

SUNG WOO CHOI

ABSTRACT. It has become apparent from the recent work by Choi et al. [3]
on the nonlinear beam deflection problem, that analysis of the integral
operator K arising from the beam deflection equation on linear elastic
foundation is important. Motivated by this observation, we perform in-
vestigations on the eigenstructure of the linear integral operator K; which
is a restriction of K on the finite interval [—I,]. We derive a linear fourth-
order boundary value problem which is a necessary and sufficient condition
for being an eigenfunction of ;. Using this equivalent condition, we show
that all the nontrivial eigenvalues of K; are in the interval (0, 1/k), where k
is the spring constant of the given elastic foundation. This implies that, as
a linear operator from L2[—1,1] to L?[~1,1], K; is positive and contractive
in dimension-free context.
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1. Introduction

The motivation of our research comes form the vertical deflection problem of
a linear-shaped beam resting horizontally on an elastic foundation, where the
beam is subject to a vertical load distribution. This problem has been one of the
major focus in mechanical engineering for decades [1, 4, 6, 7, 8, 9, 10, 11, 12, 13,
14, 16, 17, 18] due to its wide range of applications, including practical design
of highways and railways. According to the classical Euler beam theory, the
vertical beam deflection u(x) is governed by the following nonlinear fourth-order
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ordinary differential equation
d*u(z

D) 4 (), ) = wia). )
Here, f (u(z), x) is the upward spring force distribution by the elastic foundation,
which depends on the position z, as well as on the beam deflection u(x) itself.
w(z) is the downward load distribution applied vertically on the beam. For
simplicity, the weight of the beam is neglected. The constants E and I are the
Young’s modulus and the mass moment of inertia respectively, so that ETI is the
flexural rigidity of the beam.

The following linear version of (1)

ET

d4
EI dz(f) +k-u(z) = w() 2)
with the boundary condition limg 1o u(z) = limg_ 100 /() = 0 has been

well-analyzed, and has the following closed form solution [5]
0= [ Glgue ds 3
where the Green’s function G is given by
a al —al\ . (alf -l 77) s
G(z,€) = 5 exp | — +- ), a:=k/EL
(x,8) ok exp( 7 )sm( 7 1 /
Here, k > 0 is the linear spring constant of the elastic foundation in (2). Let

() = g exo (g sin (o + 7).

so that G(z,€) := K (|¢€ — z|). We define the linear integral operator K by

/Klm—él ) de = / G(,€) u(€) de

for complex functions u on R. Then the solution (3) of the linear equation (2)
becomes

u = Klw]. (4)
In recent work by Choi et al. [3], analyzing the properties of the operator K
turned out to be important even for the general nonlinear equation (1).
Note that the operator K is for infinitely long beams. For beams with finite
lengths, we define the following integral operator K; for [ > 0 by

/K|z—§| dﬁ/ (2, €) u(€) de

for complex functions w on the finite interval [—I,1]. The operator K; is also
useful for practical purpose of approximating an infinitely long beam problem
by that of finite beams [8].

In this paper, we perform detailed analysis on the eigenstructure of the oper-
ator KC;. In Section 2, we first investigates the properties of the operator K;, and,
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in particular, derive a concrete linear boundary value problem, satisfying which
is a necessary and sufficient condition to be an eigenfunction of X;. Utilizing this
linear boundary value problem, we show that there are no nontrivial eigenvalues
outside the interval (0,1/k) in Section 3. in Section 4, we will summarize and
interpret this result into two important properties the operator K;: First, K; is
a positive operator for every [ > 0, since its eigenvalues are all positive. Second,
K is a contraction in abstract dimension-free context.

The concrete structure of the eigenvalues of K; in the interval (0,1/k) is
explored in the sequel work [2].

2. The operator K;

Throughout this paper, [ is a positive real number, and whenever a statement
involves [, it is assumed to apply for every [ > 0 without explicit mentioning. Let
L?[—1,1] be the space of all square-integrable complex functions on the interval
[—1,1]. With the usual inner product

!
(u,v) = /_lu(ac)Md:r7 u,v € L?[-1,1],

L?[-1,1] is a complex inner-product space. In fact, L?[—[,] is complete with
respect to the norm |lul| := |lully = \/(u, u), and hence, is a Hilbert space. As
usual, the L?-norm [|7|,, or simply the norm || 77|, of a linear operator 7 from
L2[—1,1] to L?[—1,1], is defined to be

(17 Tu]|
[T = 1Tly= " sup
0Au€L2[—1,]] ]

Forn =0,1,2,...,let C"[—,1] be the space of all n-times differentiable complex
functions on [—1,1]. The space C°[—, 1], which is just the space of all continuous
complex functions on [—[,1], is also denoted by C[—I,]. It is easy to see that

L=l > C[-,l] > CH-1,l] > C?*[-1,]] D
Lemma 2.1. For every u € L?[—1,1], we have K;[u] € C[-1,1].

Proof. Suppose u € L?[—1,1]. Let x1, x5 € [—1,1]. By the Schwarz inequality, we
have

[Kalu] (1) = Ki[u] (22)]

Kilu
‘ / (G (21,€) — C (w2,€)} ul€) de

g{/llw(xl, G (a2, |d5} {/ fu(é |d5}

It is easy to show that G(x, &) is Lipschitz on [—I,1] with respect to z for every
& € [-1,1], so that

l
< /_Z|G<x1,s>—c<x2,«s>\ Ju(€)| de

|G (21,€) — G(x2,&)| < L(E) - |21 — 22],
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where L(§) is the corresponding Lipschitz constant for £, which is bounded for
& € [-1,1]. Thus,

(Kilu] (z1) = Kifu] (@2)] < [lull - [[LC)I] - |21 — 22,
which shows that K;[u] is Lipschitz, and hence, is continuous on [—1,]. O

Thus K; is a linear operator from L2?[—[,1] into L?[—1,1], and especially, the
image K; (L?[—1,1]) of K, is contained in C[—[,l]. We will need the following
basic property of the function K, which is from [3].

Proposition 2.2 ([3]).

adt! a . o 3¢+
K(")(y): T exp(—\/iy>s1n{\/§y+(4)}, qg=0,1,2,...

Note that for every u € L?[—, 1]

- l
:[lK(xfg)u(f)d§+/ K(§ —x)u(§)dg
l—x

l+x

=, K(y)u(z —y)dy + ; K(y)u(z +y) dy. (5)

Lemma 2.3. For every u € C[—1,1], we have

4

Kilul® () = —aKiful(@) + Tu(@). (6)

Consequently, K;[u] € C*[—1,1] for every u € C[—1,1].

Proof. Let u € C[-1,1], and let ¢ = 0,1,2,... Using the definition of differenti-
ation, we have

d l+x d xT
| K@= 1 /_ KOz~ €) u(€) de

x+h
:flg%fll{/l K@ (2 + h— &) u(f) dé — /K r—=¢ (f)dﬁ}

x+h
:nm;{/ KO (2 + h— €) u(€) de — / K@ (2 — ) u(€) de

h—0 1
z+h
+/ KD (x — &) u(€) dé — / K@D (z — &) u(f) dg}
z+h g (q) h— K@ (g —
iy [ 5,1 = i) ae
+ lim ~ o K@ (z — &) u(€) de
h—0 h

/ KW“) &) u(€) de + K9 (0) u(x) (7)
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l+z

=/ K@) (y) u(z — y) dy + K9(0) u(z), (8)

l—x l

el ARRLIORCERY :i/K%—x)u(é)d&
= lim {/ K9D(¢ -z —h)u(€)de — /K d§}
= lim - { / KD(¢ - — h)u(§) dé - / K9(& — ) u(€) dé

an

+ K(q) €)de — / KW(¢ - ) d§}
K(q —r—h) - K@ _—
 Jim / = 2 (e de
Lo (a)
~ i [ KW - u(e)de
l
— - [ KO (€~ a)u(e) d¢ - KD (0)u(z) o)
l—x
=- K9 (y) u(z +y) dy — K9(0) u(x). (10)
0

Here, we used the fact that u € C[—1,1] for the equalities in (7) and (9). By (5)
and (8), (10) for ¢ = 0, we have

d l+x l—x

i ), K(y)u(z —y)dy + ; K(y)u(z +y)dy

l+x
:{ i K’(y)u(m—y)dy-l—K(O)U(m)}

{/EK’ w(z +y) dy — (O)u(m)}

l+x l—x
= [ K@ —y)dy— / K'(yu(e+y)dy.  (11)
0 0

By (11) and (8), (10) for ¢ = 1, we have

Kilu]'(z) =

d l+x l—x
/Cl[u]”(x):%O K'(y) u(z —y dy——/ K'(y) u(z +y) dy

l+x
= { ; K”(y)u(x—y)dy-&-K/(O)U(m)}
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l—x
R {/0 K"(y) u(z +y) dy — K'(0) U(I)}

4z l—x

=/ K"(y) u(z —y) dy + i K"(y) u(z +y) dy, (12)

since K'(0) = 0 by Proposition 2.2. Again by (12) and (8), (10) for ¢ = 2, we
have
d l+x l—z

K@) = 5 [ K e+ [ K @+ dy

l+x
- { K (y)u(z —y) dy+K”(0)U(I)}

0
l—x
+ {—/ K<3)(9)U($+y)dy—K"(O)U(JU)}
0

l+x l—x

= K@ (y)u(z —y) dy — i K@) ux+y)dy.  (13)

Once more by (13) and (8), (10) for ¢ = 3, we have
Ki[u]® (x)
d +z d l—x

=— K® —y)dy — — K® d
i /. (y)u(z —y)dy i /. (y) u(z +y)dy

={ZHK@@mu—m@+K@®mw}

- {— /lm KW (y) u(e +y) dy — KO(0) U(x)}
0

l+x

l—x
= KW (y)u(z —y) dy + / KD (y)u(z +y) dy + 2K (0) u(z)
0 0

l+x l—x Oé4
= —a4{ K(y)U(ar—y)dy+/ K(y) u(x+y)dy} + fu(m‘), (14)
0 0

since K®)(0) = ’21—2 and K@ (y) = —a*K (y) by Proposition 2.2. Thus (6) follows
from (5) and (14).

Note that the right side of (6) is in C[—I,[] by Lemma 2.1 and the assumption
u € C[—1,1]. Thus K;[u]® € C[~1,1], and hence, K;[u] € C*[~1,1]. O

Lemma 2.4. For every u € C*[—1,1], we have

K1 [u?] (@) = Kifu) @ ()
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3
_ Z { Y uB D) KD — z) — D (1) KD + x)} _
=0

Proof. Suppose u € C*[—1,1]. Note that u? € C[-I1,l] ¢ L?*[-1,1] for ¢ =
1,2,3,4. Applying (5) to u’, we have

4z

l—x
K@) = [ K- y)dy+ / K@) (e +y)dy.  (15)

By integration by parts, (15) becomes

l I+
lCz[U’}(a?)Z{[—K(y)U(w—y " / K'(y) {—u(z - )}dy}

l—x
—i—{[ u(z +y)5 " — / K'(y)u(x +y) dy}

= l+x u(x —y)dy — /l :CK u(z+y)d
0
+{-K(+z)u(=1) + KO)u(z)} + {K({ - 2)u(l) - K(0) u(x)}
l+z

l—x
= u(z —y)dy — / K'(y)u(zx +vy)d
0

+{u)K(l—z) —u(-l)K(I+x)}. (16)
Comparing (16) and (11), we have
K [u'] (z) — Ki[u] (z) = u(l) K(I — z) —u(—1) K(l + ). (17)

Applying (17) to ul4~Y instead of u, we have

K [u®] (@)~ K[ @ ()

_ {’Cz [u] (2) — Ky [t 1> }+ {’Cz [uto- 1) K )@ (2 )}

= {ic | () } () - [ ] @}
+{Kci [wla V] () }

N

:{u(q—l)(l)K(l— @) — 1™ 1)( [ K(l

o)}
+ {/cl [u@*l)] () — K [u] V) (sc)} (18)

for ¢ =1,2,3,4. Applying (18) recursively and using (17), we have

K, [u@ﬂ (@) — K [ul]® (2)
— {u<3>(1) K(—2) —u® () K + a:)} + {/cl [u<3>] () — Ky [u]® (x)}/
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- {u(3)(l) Kl —a)—u® (=) K( + 1:)}

+{u' () K (1 —2) —u" (D) K+ 2)} + {Ki [u") () = K [u]" ()}
- {u<3>(Z) Kl —2) —u® (=) K( + )

+ (W () E( — ) — " (1) K(+ )}

(K~ ) o (~ 1> (U +2)) + (K ) (2) — Ko ) (2)}
- {u<3>(1) K(l—a) —u® (=) K( + ) }

+ " () E( — ) — " (1) K( + )}

+{u/ (1) K(I—2) — o/ (1) K(I +2)}"

+{u(l) K (1 — 2) — u(~1) K (I + 2)}

— Z { WB=D (Y KO (1 — z) — B (=) KD (1 + x)} ,

Wthh completes the proof. O

From Lemmas 2.3 and 2.4, we obtain the following necessary and sufficient
condition for being an eigenfunction of K;. Note that an eigenfunction of K
must be in C*[—1, 1] by Lemmas 2.1 and 2.3.

Lemma 2.5. Let u € L?[—1,1]. Then K;[u] = Au for some X\ € C, if and only if
u € C*—1,1], and u is a solution to the following fourth-order linear boundary
value problem:

)\u(4) + ()\ _ ;) oty = 0, (19)

G + V20" (1) + o2/ (1) = 0, (20)
u(3)(_l) — \[au”(— ) —+ a u ( l) =0, (21)
u® (1) — o2’ (1) — V2Pu(l) =0, (22)
u(B)(—l)—ozu( 1) +V2a’u(—1) = 0. (23)

Proof. Suppose K;[u] = Au for some A € C. Then (6) in Lemma 2.3 becomes

4
Au® = —a*Au + %u

which is equivalent to (19). Applying K; to (19) and using (6) in Lemma 2.3,
we have

0= 2K [u®] + <>\ - ;) ot Ky [u]
:A{/cl[u} K] @ }+>\{ 4/cl[u]+°:u}+<A—]1€)a4/cl[u]
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by 4 4

= {5 [u®] - kil 0} + S - S Kalul,

=\ {icl [u(4)] — K[yl <4>} . (24)

Suppose A = 0. Then we have u = 0 ! by (19), and hence, u clearly satisfies
(20)-(23). Suppose A # 0. Then by Lemma 2.4, (24) is equivalent to
3

Z(fl)ju(:s*j)(l) KO (1 —2) Zu(d N=1) KD (1 + z)

Jj=0

which, by Proposition 2.2, is in turn equlvalent to

i(—l)ju(&j)(l) a;;l exp {—\%(l - x)} sin {\%(z —2) + W}

altt

_ iU(H)(_D %exp{ }(Hz)}bm{\j‘i(l +a)+ 4)7T}

and hence, is again equivalent to

(_1)ju(3—j)(l) aitl “in {a(l —z)+ (37 + 1)77}

M-

<
I
o

2k

J+ 3j+1
= exp (—\@ax) Zu(3 (- an sm{jé(l—&—x)—i—(jz)ﬂ}. (25)
Note that the functlonal identity (25) holds, if and only if both sides of (25) are
identically zero. Thus the following two conditions together are equivalent to
(25):

jzi:o(—nj o uB=9 () sin {\j‘i(z )+ W} =0, (26)
jzi:oaf u(3_j)(—l)sin{\o;(l +a)+ W} =0. (27)
Since
. ™ T\ | LT 1 . 1
Sin (z + 7> = CoS (Z) Sin 2z + sin (Z) Cos z = ﬁ sin 2 + ﬁ COS z,

4
. n 4 47\ . L 4 B .
sin | z 1 cos 1 sin z + sin 1 cosz = —sin z,

) ( +77r> (77T> inzt s (77r> 1 . 1
S | 2 —_— =COS| — sz S| —— JCOSZ = —=SINZ — —= COSZ,
4 4 4 V2 V2

1 fact, this shows that the linear operator K; is one-to-one, and the only eigenfunction of
K; with the zero eigenvalue is the zero function.



— () {— sin {0‘2(1 —z) ]
o[ty 0} 0}
aBu(l) {\%(z - x)}
- \% {{u@)(n +v2au" (1) + a2u'(1)} in {ji(z - x)}
+ {u<3>(l) — a2 (l) - \@a?’u(l)} cos {\%(l - m)H : (28)

Since sin z, cos z are linearly independent functions, (28) is equivalent to (20),
(22), and (29) is equivalent to (21), (23).

Conversely, suppose u satisfies (19) and (20)-(23). If A = 0, then v = 0 by
(19), and hence, K;[u] =0 =0+ u. Suppose A # 0. By applying K; on (19) and
using (6) in Lemma 2.3, we get

0=XK; [u(‘l)} + <)\ - li) ot Ky [u)

=\ {/cl [u@ﬂ - ICl[u](4)} A {—a4ICl[u] + C;:u} + ()\ - llc) o Ky [u)
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=A {ICl [u(‘l)} - /Cl[u}(4)} + %./Lu - %4 Kilul,

and hence, by the equivalence between (20)—(23) and (24) as shown above, we
have

k 4 4
Kifu] = Au = — M [u®] = K@} <o,
which completes the proof. U

3. Eigenvalues of K; outside of (0,1/k)

It is easy to see that K; is a self-adjoint operator, and it is well-known [15]
that all the eigenvalues of a self-adjoint operator are real, and the eigenspace
corresponding to each eigenvalue is spanned by real eigenfunctions. Thus it
suffices to deal with only real eigenfunctions and eigenvalues.

In this section, we will try to find nontrivial eigenvalues of K; using Lemma 2.5.
Note that the solution space of the differential equation (19) changes qualita-
tively according to the sign of the quantity 1 —1/(\k). Specifically, we have the
following three cases:

(M 1-1/(Ak)=0: A=1/k.

(IT) 1—1/(Ak) >0: A<O0or A>1/k.

(III) 1—1/(Mk) <0: 0 < A< 1/k.

The cases (I) and (IT) will be considered in Sections 3.1 and 3.2 respectively.
It turns out that there are no eigenvalues in these two cases. This will lead to
the conclusions in Section 4 on the properties of X;. The case (IIT), where the
eigenvalues of K; do exist, is analyzed in [2].

3.1. The case (I). This corresponds to A = 1/k. Suppose 1/k is an eigenvalue
of K;. Then there exists a nonzero u € L?[—1, 1] which satisfies (19) and (20)—(23)
in Lemma 2.5. We can assume u is a real function. In this case, (19) becomes
u™® =0, and its general (real) solution is

u(z) = A+ Bx+ Cax? + Dz, A B,C,DcR,
and hence,
u'(z) = B4 2Cx 4 3Dz?, u'(z) =2C + 6Dz, u®(z)=6D.
So the boundary conditions (20)—(23) respectively become
0 =u® (1) + vV2au" (1) + o/ (1)
= 6D + v2a (2C + 6D1) + o (B + 201 + 3DI?)
—a?B+2 (la2 + \/ia) C+3 (l2a2 +2v2la + 2) D, (30)
0= u®(=1) — V2au" (—1) + v/ (—1)
= 6D — V2a (2C — 6DI) + o (B — 2C1 + 3DI?)
—a?B -2 (la2 n \/ia) C+3 <l2a2 +2v2la + 2) D, (31)
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0=u®(l) — a?u'(1) — V2a3u(l)
=6D — a® (B +2C1 + 3DI?) — V2a® (A + Bl + CI* + DI®)
=—V2a%4 — (\/51043 + ag) B — (\/ﬁlgof3 + 2la2) C
— (Vata® +32a% —6) D, (32)
0 =u® (=) — a®u' (=) + V2> u(-1)
= 6D — o? (B - 201 + 3DI?) + v2a* (A — Bl + CI* — DI?)
=V20%4— (Vala® +a?) B+ (V22a® +210%) €

— (Vara® + 3% 6) D. (33)
By adding and subtracting (30), (31) and (32), (33) respectively, we have
0=0’B+3 (z%/" +2V2la + 2) D, (34)
0=2(la*+v2a) C, (35)
0=v2a*A+ (V2ia® + 210%) C, (36)
0= (V2la® + 0?) B+ (Val*a® + 31202 — 6) D. (37)

We have C' = 0 from (35), and hence A = 0 from (36). (34) and (37) together

can be written as
B 0
A (5)=(0):

A= ( a? 3 (l20z2 + 22l + 2))

where

V23 + a2 V20Ba3 + 31202 — 6
Since
det A = o (\@1%3 431202 — 6) —3 (z%ﬂ +2v2la + 2) (\/izof’ n OF)

- a2 (2\653@3 12202 + 12200 + 12) £0,

we get B = D = 0. It follows that u = 0, which is a contradiction. Thus we
conclude:

Lemma 3.1. 1/k is not an eigenvalue of K; for every 1 > 0.

3.2. The case (II). This corresponds to the case A < 0 or A > 1/k, which
we will assume throughout this section. Suppose A\ is an eigenvalue of K;, and
u € L*[—1,1] is a corresponding nonzero eigenfunction. Then by Lemma 2.5, \,
u satisfies (19) and (20)—(23). We can also assume u is a real function. Denote

=4/1 L >0
KR = >\k‘ .
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Then (19) becomes
(4) 1 4 (4) 4 4
0=u" + 1_E au=u" 4+ KAy,

and its general (real) solution is

uw(x) =Acy(x)+ Bsy(r)+Cc_(z)+Ds_(x)
=4 B ¢ D)|°>F
where we denote

ci(z) = exp (i’}%) cos (’\’%&) . si(2) =exp (i:‘gm) sin (f%:) .

Note that

¢y (z) = \H/O%(:Xp <iﬁx> + cos (3‘%) ~ sin <\“/02iz>}
= %{icm) s+ ()},

s, (z) = T/O%exp (iﬁ cos (’j/%a:) + sin <\fx>}
= %{cm + 51 (7)),

where we denote

Thus, denoting

1 -1 0 ©
B (B+ O) _(r 1t 0 0
O B_ 0o 0 -1 -1]°
0o 0 1 -1
we have
ct(2) / i (z)
se(z) | _ My, s+ ()
c_(x) V2 c_(x)
s_(x) s_(x)
Note that
z(n 5) mee(Y 5.
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and hence,

i
00_1

SO~ -

o o~ O

—
0007

Tooo

o - O O

322(

So we have

u'(x)

S
NN TN
BEEE
. + 4+
— o ®
)))
Eawd
+ ] o
£30¢  h
| | B
SN~— N
3|l
a g[S
~
O —
Q
A
QO
=
DN A
3
< <
N~— SN—
I I
—
53
S~—
D
3

Hence we have

u® (z) £ V2au" (z) + ou/ (z)
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Using (38) and (39), the boundary conditions (20)-(23) respectively become
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and hence are equivalent to

(A B C D)-P=0, (40)
where P is the following 4 x 4 matrix
— (K2 =1) cp () = (k+1)%sy (1) — (w2 —1) (D4 (k—1)2s_()
po| +DZes(d) = (K2 —1) s4() (r ~ D?e_(I) + (k% = 1) s_(I)
(2 1) e () — (5 — 1125 (1) (52— 1) () + (n + 1255 (1)

(k=1)2c_(l) + (k* = 1) s_(1) (k+1)%cp(l) — (82— 1) s4:(1)

— (P H+r+2) i () = (¥ — k) sp () — (k¥ +r—2) co() + (k* — &) s_(1)

(k3 = k) ey () = (K + r+2) s (1) (%= k) c— (D) + (K + Kk —2) s_(I)

) —
(K24 r—2) c(l) = (k¥ — &) s_(I) (k24K +2) cyp() + (5 — &) s (1)
(k¥ = k) co()+ (K +r—2)s_(1) (k% = k) cp()) = (K* +r+2) s (1)
Note that the assumption that w is nonzero is equivalent to the existence of
nontrivial (A B C D) satisfying (40). Clearly, this again is equivalent to det P =
0. Thus A is an eigenvalue of K, if and only if det P = 0.
Involved computation ? reveals the following determinant of P:

det P
= 4e~2V2ax [(n — D (K24 1) 4 Ve (g 1)t (52 4 1)
4e2V2lar (/{4 — 1)2 1 9¢2V2lar (52 — 1)2 .
. {(/-@4 — 6%+ 1) cos (2\@104/1) +4k (K* — 1) sin (2\@1@/@) H . (41)
Denote the following expression in (41) by b:

b= (/q4 — 6K” + 1) cos (2\@1&/@) + 4k (K* — 1) sin (Qﬁlam) .

Since
(/s4 — 6K% + 1)2 =+ {4/{ (52 — 1)}2 = (/i2 + 1)4,
we have
) K G2 dre (12 — .
b= (f<a + 1)2 {(/#(:—1)_'—21 - cos (2\@[0@%) + (,%(2—1—1)? - sin (2\/@@/@')}
= (K" + 1)2 {cos g(K) - cos (2\/5104/1) + sin (k) - sin <2\/§lom)}
= (k* + 1)2 cos (2\/§lcm - f](n)) (42)

2This long and arduous computation can be facilitated with the help of symbolic compu-
tation tools, or “computer algebra systems (CAS)”, such as Macsyma, Maple, Mathematica,
Reduce.
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for some function §(k) of k. Specifically, we define § by

arctan{%(mtl)} fo<k<v2-1
Kt —6K2+1 —= ’
-z if K =v2—1,
g(k) == —ﬂ+arctan{M} ifvV2-1<kr<vV241,
-3 if K =v2+1,
4&(&2—1) .
—2m + arctan § gy if K >V2+1,

where the branch of arctan is taken such that arctan(0) = 0. Note that

wt—6n? 1= {2~ (3-2v2) }{s? - (3+2v2)}
= (m+m> <nm) <n+m> (/-e 3+2\f2>
:{n+(ﬂ—l)}{n—(ﬂ—l)}{n+<\/§+1)}{n—(\/§+1)},

and hence,
4k (K2 = 1)
kY —6Kk2+1

B 4rk(k + 1) . k—1
e (V2-DH e+ (V2 D) (s (V2o (V241

So it is easy to see that § thus defined is continuous. In fact, we have

B 1 )2'<4/~$(/€21) >/__(/£4—6/-e2+1)2. 4 (r%+1)°

4 2
14 (A0 ) AW Oet (R2+ 1) (5t =682+ 1)
4
-t 43
K2+ 1 < (43)

g(r) == 2V2lak — §(k), K >0.

Then g is real-analytic too, and, for k£ > 0, the Taylor expansion of g(x) is

9(5) = 9(0) + 9/ O + 59" (O)R” + LoD O + -

= (2v2la + 4 /@—éﬁs3+-", (44)
( )x=3
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since
g (k) = 2v2la + /#i—f—l’
PTG . L
(k2 +1) (k2+1)
SO0 = =5 (n2+1)2+8n~z(n2+1) 25 8(3&2—i)
(k2+1) (k2 +1)

by (43) and the definition of g(k),
Using the function g(x), (42) becomes
b

= (k* + 1)2 cos g(k),

and hence, the determinant of P in (41) can be rewritten as
det P = de~2V2ax {(n — D (24 1)+ eV (g4 1)t (52 4 1)
—4e2V3lan (k* — 1)2 4 2¢2V2lan (k* - 1)2 (R + 1)2 cos g(ﬁ)}
2
_ 46—2\/§lom {(I{ + 1)4 (FLQ + 1)2 . (eQ\/ilom> + (K . 1>4 (IiQ + 1)2
-2 (k* + 1)2 (k* — 1)2 (2 —cosg(r)) - ezﬁla“}
2
—4 (/{2 + 1)2 672ﬁlan {(KZ + 1)4 . (62\/§laﬁ> + (H _ 1)4
—2 (k2 = 1) (2 = cos g(k)) - emm} . (45)
It follows from (45) that the equation det P = 0 is equivalent to

62\/51@& _ (I{_’_ll)él . {(52 — ]_)2 (2 — COSQ(E))

/(52 = 1)* 2= cosg(w)? — (5 1)* - (5 — 1)* }

which, after simplification of the right side, is equivalent to

(2Valar _ (%)2 . {2 —cosg(x) £1/(2 — cosg())? — 1 } . (46)

Define
o(t) :== 2 — cost 41/ (2 — cost)® — 1.
Then, one can easily find out that the Taylor expansion of ¢(t) is
1 1
gp(t):1+t+§t2+ﬁt3+~--, t>0. (47)

Lemma 3.2. detP # 0 for every k > 0. Consequently, there is no eigenvalue
A of Ky such that A < 0 or A > 1/k.
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Proof. Suppose k > 0. It is sufficient to show

e2V2aK (F” — 1)2 -0 (9(K)) (48)

k+1

from which the proof follows, since (48) implies that there is no x > 0 satisfying
(46), and hence, the equation det P = 0. (48) is equivalent to

(k+1)%e2V2er (5 —1)% o (g(k)) > 0. (49)
By (44), (47), and the Taylor expansion e’ =1+t + %tQ + %t?’ + .-+, we have

(1 + 1)% 2V2lom

= (5 +1)? {1+2fzom+ (2@%)2 é

=1+ (24 2V3la) s + (1+4V3l0 + 41%02) 52
<2xfla+812a2+8f )m +eoe

(k= 1% (g(x))

1+{(2\/§la+4)n—§/€3+~'}

{(2fm+4)n§n +- }2

+112{<2\fla+4)/€—;1n3+ }3]
1+{ (2f1a+4)} {1—2(2\/§la+4>—|—1(2\/§l0z+4)2}m2
+{ 2\fla+4 (2\/5104—&-4)2—% L (2\fza+4) }H3+~--
(

(Q\NM) +}

= (k- 1)°

1
2

3
=1+ +2fla)f<+(1+4\fza+4l2 2)

2
4+/2
+< 8—6\/§la+\3[l3a3> K

and hence,
(k +1)% e2V2er _ (5 — 1) o (g(r))

= (8 +8V2la + 81%a% + 4\3/513();)) K34
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42 .
- 8+8\f21a+812a2+T\[l3a3 73

for some 0 < & < k. This shows (49), and hence, (48). Thus the proof is
complete. O

4. Main results

We translate and summarize the results of the previous sections. First, the
positiveness of K; follows immediately, since all the nontrivial eigenvalues of K;
are positive by Lemma 3.2.

Theorem 4.1. For everyl > 0, K; is a positive operator.

Even though the domain and the range of the operator K; is the same space
L?[—1,1], the physical dimensions for these two spaces are different from each
other. Let L, M,S be physical dimensions representing length, mass, time re-
spectively. The dimension of w, the input load distribution in (2), is that of
force per length, and hence MS~2. The dimension of u, the output deflection
in (2), is that of length L. Note that K; takes w € L?[—l,l] as the input and
transforms it to the output w € L?[—[,1] in (4). In this process, K; performs
the dimension change from M S~2 to L. This amounts to multiplying LM ~1 52,
which is exactly the dimension of the constant 1/k. Thus the actual dimension-
free norm of K; should be k - ||K;||. This leads us to the following conclusion,
since ||K;|| < 1/k by Lemmas 3.1 and 3.2.

Theorem 4.2. For every I > 0, ||Ki|| < 1/k, and hence, the dimension-free
norm k-||KCy|| of KC; is less than 1. Consequently, K; is a contraction in dimension-
free context.
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