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SPECTRAL ANALYSIS OF THE INTEGRAL OPERATOR

ARISING FROM THE BEAM DEFLECTION PROBLEM ON

ELASTIC FOUNDATION I: POSITIVENESS AND

CONTRACTIVENESS†

SUNG WOO CHOI

Abstract. It has become apparent from the recent work by Choi et al. [3]
on the nonlinear beam deflection problem, that analysis of the integral
operator K arising from the beam deflection equation on linear elastic
foundation is important. Motivated by this observation, we perform in-
vestigations on the eigenstructure of the linear integral operator Kl which
is a restriction of K on the finite interval [−l, l]. We derive a linear fourth-
order boundary value problem which is a necessary and sufficient condition
for being an eigenfunction of Kl. Using this equivalent condition, we show
that all the nontrivial eigenvalues of Kl are in the interval (0, 1/k), where k
is the spring constant of the given elastic foundation. This implies that, as
a linear operator from L2[−l, l] to L2[−l, l], Kl is positive and contractive
in dimension-free context.
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1. Introduction

The motivation of our research comes form the vertical deflection problem of
a linear-shaped beam resting horizontally on an elastic foundation, where the
beam is subject to a vertical load distribution. This problem has been one of the
major focus in mechanical engineering for decades [1, 4, 6, 7, 8, 9, 10, 11, 12, 13,
14, 16, 17, 18] due to its wide range of applications, including practical design
of highways and railways. According to the classical Euler beam theory, the
vertical beam deflection u(x) is governed by the following nonlinear fourth-order
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ordinary differential equation

EI
d4u(x)

dx4
+ f (u(x), x) = w(x). (1)

Here, f (u(x), x) is the upward spring force distribution by the elastic foundation,
which depends on the position x, as well as on the beam deflection u(x) itself.
w(x) is the downward load distribution applied vertically on the beam. For
simplicity, the weight of the beam is neglected. The constants E and I are the
Young’s modulus and the mass moment of inertia respectively, so that EI is the
flexural rigidity of the beam.

The following linear version of (1)

EI
d4u(x)

dx4
+ k · u(x) = w(x) (2)

with the boundary condition limx→±∞ u(x) = limx→±∞ u′(x) = 0 has been
well-analyzed, and has the following closed form solution [5]

u(x) =

∫ ∞

−∞
G(x, ξ)w(ξ) dξ, (3)

where the Green’s function G is given by

G(x, ξ) :=
α

2k
exp

(
−α|ξ − x|√

2

)
sin

(
α|ξ − x|√

2
+

π

4

)
, α := 4

√
k/EI.

Here, k > 0 is the linear spring constant of the elastic foundation in (2). Let

K(y) :=
α

2k
exp

(
− α√

2
y

)
sin

(
α√
2
y +

π

4

)
,

so that G(x, ξ) := K (|ξ − x|). We define the linear integral operator K by

K[u](x) :=

∫ ∞

−∞
K (|x− ξ|)u(ξ) dξ =

∫ ∞

−∞
G(x, ξ)u(ξ) dξ

for complex functions u on R. Then the solution (3) of the linear equation (2)
becomes

u = K[w]. (4)

In recent work by Choi et al. [3], analyzing the properties of the operator K
turned out to be important even for the general nonlinear equation (1).

Note that the operator K is for infinitely long beams. For beams with finite
lengths, we define the following integral operator Kl for l > 0 by

Kl[u](x) :=

∫ l

−l

K (|x− ξ|)u(ξ) dξ =

∫ l

−l

G(x, ξ)u(ξ) dξ

for complex functions u on the finite interval [−l, l]. The operator Kl is also
useful for practical purpose of approximating an infinitely long beam problem
by that of finite beams [8].

In this paper, we perform detailed analysis on the eigenstructure of the oper-
ator Kl. In Section 2, we first investigates the properties of the operator Kl, and,
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in particular, derive a concrete linear boundary value problem, satisfying which
is a necessary and sufficient condition to be an eigenfunction of Kl. Utilizing this
linear boundary value problem, we show that there are no nontrivial eigenvalues
outside the interval (0, 1/k) in Section 3. in Section 4, we will summarize and
interpret this result into two important properties the operator Kl: First, Kl is
a positive operator for every l > 0, since its eigenvalues are all positive. Second,
Kl is a contraction in abstract dimension-free context.

The concrete structure of the eigenvalues of Kl in the interval (0, 1/k) is
explored in the sequel work [2].

2. The operator Kl

Throughout this paper, l is a positive real number, and whenever a statement
involves l, it is assumed to apply for every l > 0 without explicit mentioning. Let
L2[−l, l] be the space of all square-integrable complex functions on the interval
[−l, l]. With the usual inner product

〈u, v〉 :=
∫ l

−l

u(x) v(x) dx, u, v ∈ L2[−l, l],

L2[−l, l] is a complex inner-product space. In fact, L2[−l, l] is complete with

respect to the norm ‖u‖ := ‖u‖2 =
√
〈u, u〉, and hence, is a Hilbert space. As

usual, the L2-norm ‖T ‖2, or simply the norm ‖T ‖, of a linear operator T from
L2[−l, l] to L2[−l, l], is defined to be

‖T ‖ := ‖T ‖2 = sup
0 6=u∈L2[−l,l]

‖T [u]‖
‖u‖ .

For n = 0, 1, 2, . . ., let Cn[−l, l] be the space of all n-times differentiable complex
functions on [−l, l]. The space C0[−l, l], which is just the space of all continuous
complex functions on [−l, l], is also denoted by C[−l, l]. It is easy to see that
L2[−l, l] ⊃ C[−l, l] ⊃ C1[−l, l] ⊃ C2[−l, l] ⊃ . . .

Lemma 2.1. For every u ∈ L2[−l, l], we have Kl[u] ∈ C[−l, l].

Proof. Suppose u ∈ L2[−l, l]. Let x1, x2 ∈ [−l, l]. By the Schwarz inequality, we
have

|Kl[u] (x1)−Kl[u] (x2)|

=

∣∣∣∣∣
∫ l

−l

{G (x1, ξ)−G (x2, ξ)}u(ξ) dξ
∣∣∣∣∣ ≤

∫ l

−l

|G (x1, ξ)−G (x2, ξ)| · |u(ξ)| dξ

≤
{∫ l

−l

|G (x1, ξ)−G (x2, ξ)|2 dξ
} 1

2

·
{∫ l

−l

|u(ξ)|2 dξ
} 1

2

It is easy to show that G(x, ξ) is Lipschitz on [−l, l] with respect to x for every
ξ ∈ [−l, l], so that

|G(x1, ξ)−G(x2, ξ)| ≤ L(ξ) · |x1 − x2| ,
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where L(ξ) is the corresponding Lipschitz constant for ξ, which is bounded for
ξ ∈ [−l, l]. Thus,

|Kl[u] (x1)−Kl[u] (x2)| ≤ ‖u‖ · ‖L(·)‖ · |x1 − x2| ,
which shows that Kl[u] is Lipschitz, and hence, is continuous on [−l, l]. ¤

Thus Kl is a linear operator from L2[−l, l] into L2[−l, l], and especially, the
image Kl

(
L2[−l, l]

)
of Kl is contained in C[−l, l]. We will need the following

basic property of the function K, which is from [3].

Proposition 2.2 ([3]).

K(q)(y) =
αq+1

2k
exp

(
− α√

2
y

)
sin

{
α√
2
y +

(3q + 1)π

4

}
, q = 0, 1, 2, . . .

Note that for every u ∈ L2[−l, l]

Kl[u](x) =

∫ x

−l

K(x− ξ)u(ξ) dξ +

∫ l

x

K(ξ − x)u(ξ) dξ

=

∫ l+x

0

K(y)u(x− y) dy +

∫ l−x

0

K(y)u(x+ y) dy. (5)

Lemma 2.3. For every u ∈ C[−l, l], we have

Kl[u]
(4)(x) = −α4Kl[u](x) +

α4

k
u(x). (6)

Consequently, Kl[u] ∈ C4[−l, l] for every u ∈ C[−l, l].

Proof. Let u ∈ C[−l, l], and let q = 0, 1, 2, . . . Using the definition of differenti-
ation, we have

d

dx

∫ l+x

0

K(q)(y)u(x− y) dy =
d

dx

∫ x

−l

K(q)(x− ξ)u(ξ) dξ

= lim
h→0

1

h

{∫ x+h

−l

K(q)(x+ h− ξ)u(ξ) dξ −
∫ x

−l

K(q)(x− ξ)u(ξ) dξ

}

= lim
h→0

1

h

{∫ x+h

−l

K(q)(x+ h− ξ)u(ξ) dξ −
∫ x+h

−l

K(q)(x− ξ)u(ξ) dξ

+

∫ x+h

−l

K(q)(x− ξ)u(ξ) dξ −
∫ x

−l

K(q)(x− ξ)u(ξ) dξ

}

= lim
h→0

∫ x+h

−l

K(q)(x+ h− ξ)−K(q)(x− ξ)

h
u(ξ) dξ

+ lim
h→0

1

h

∫ x+h

x

K(q)(x− ξ)u(ξ) dξ

=

∫ x

−l

K(q+1)(x− ξ)u(ξ) dξ +K(q)(0)u(x) (7)
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=

∫ l+x

0

K(q+1)(y)u(x− y) dy +K(q)(0)u(x), (8)

and

d

dx

∫ l−x

0

K(q)(y)u(x+ y) dy =
d

dx

∫ l

x

K(q)(ξ − x)u(ξ) dξ

= lim
h→0

1

h

{∫ l

x+h

K(q)(ξ − x− h)u(ξ) dξ −
∫ l

x

K(q)(ξ − x)u(ξ) dξ

}

= lim
h→0

1

h

{∫ l

x+h

K(q)(ξ − x− h)u(ξ) dξ −
∫ l

x+h

K(q)(ξ − x)u(ξ) dξ

+

∫ l

x+h

K(q)(ξ − x)u(ξ) dξ −
∫ l

x

K(q)(ξ − x)u(ξ) dξ

}

= lim
h→0

∫ l

x+h

K(q)(ξ − x− h)−K(q)(ξ − x)

h
u(ξ) dξ

− lim
h→0

1

h

∫ x+h

x

K(q)(ξ − x)u(ξ) dξ

= −
∫ l

x

K(q+1)(ξ − x)u(ξ) dξ −K(q)(0)u(x) (9)

= −
∫ l−x

0

K(q+1)(y)u(x+ y) dy −K(q)(0)u(x). (10)

Here, we used the fact that u ∈ C[−l, l] for the equalities in (7) and (9). By (5)
and (8), (10) for q = 0, we have

Kl[u]
′(x) =

d

dx

∫ l+x

0

K(y)u(x− y) dy +
d

dx

∫ l−x

0

K(y)u(x+ y) dy

=

{∫ l+x

0

K ′(y)u(x− y) dy +K(0)u(x)

}

+

{
−
∫ l−x

0

K ′(y)u(x+ y) dy −K(0)u(x)

}

=

∫ l+x

0

K ′(y)u(x− y) dy −
∫ l−x

0

K ′(y)u(x+ y) dy. (11)

By (11) and (8), (10) for q = 1, we have

Kl[u]
′′(x) =

d

dx

∫ l+x

0

K ′(y)u(x− y) dy − d

dx

∫ l−x

0

K ′(y)u(x+ y) dy

=

{∫ l+x

0

K ′′(y)u(x− y) dy +K ′(0)u(x)

}
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−
{
−
∫ l−x

0

K ′′(y)u(x+ y) dy −K ′(0)u(x)

}

=

∫ l+x

0

K ′′(y)u(x− y) dy +

∫ l−x

0

K ′′(y)u(x+ y) dy, (12)

since K ′(0) = 0 by Proposition 2.2. Again by (12) and (8), (10) for q = 2, we
have

Kl[u]
(3)(x) =

d

dx

∫ l+x

0

K ′′(y)u(x− y) dy +
d

dx

∫ l−x

0

K ′′(y)u(x+ y) dy

=

{∫ l+x

0

K(3)(y)u(x− y) dy +K ′′(0)u(x)

}

+

{
−
∫ l−x

0

K(3)(y)u(x+ y) dy −K ′′(0)u(x)

}

=

∫ l+x

0

K(3)(y)u(x− y) dy −
∫ l−x

0

K(3)(y)u(x+ y) dy. (13)

Once more by (13) and (8), (10) for q = 3, we have

Kl[u]
(4)(x)

=
d

dx

∫ l+x

0

K(3)(y)u(x− y) dy − d

dx

∫ l−x

0

K(3)(y)u(x+ y) dy

=

{∫ l+x

0

K(4)(y)u(x− y) dy +K(3)(0)u(x)

}

−
{
−
∫ l−x

0

K(4)(y)u(x+ y) dy −K(3)(0)u(x)

}

=

∫ l+x

0

K(4)(y)u(x− y) dy +

∫ l−x

0

K(4)(y)u(x+ y) dy + 2K(3)(0)u(x)

= −α4

{∫ l+x

0

K(y)u(x− y) dy +

∫ l−x

0

K(y)u(x+ y) dy

}
+

α4

k
u(x), (14)

sinceK(3)(0) = α4

2k andK(4)(y) = −α4K(y) by Proposition 2.2. Thus (6) follows
from (5) and (14).

Note that the right side of (6) is in C[−l, l] by Lemma 2.1 and the assumption
u ∈ C[−l, l]. Thus Kl[u]

(4) ∈ C[−l, l], and hence, Kl[u] ∈ C4[−l, l]. ¤

Lemma 2.4. For every u ∈ C4[−l, l], we have

Kl

[
u(4)

]
(x)−Kl[u]

(4)(x)
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=

3∑

j=0

{
(−1)j u(3−j)(l)K(j)(l − x)− u(3−j)(−l)K(j)(l + x)

}
.

Proof. Suppose u ∈ C4[−l, l]. Note that u(q) ∈ C[−l, l] ⊂ L2[−l, l] for q =
1, 2, 3, 4. Applying (5) to u′, we have

Kl [u
′] (x) =

∫ l+x

0

K(y)u′(x− y) dy +

∫ l−x

0

K(y)u′(x+ y) dy. (15)

By integration by parts, (15) becomes

Kl [u
′] (x) =

{
[−K(y)u(x− y)]

l+x
0 −

∫ l+x

0

K ′(y) {−u(x− y)} dy
}

+

{
[K(y)u(x+ y)]

l−x
0 −

∫ l−x

0

K ′(y)u(x+ y) dy

}

=

∫ l+x

0

K ′(y)u(x− y) dy −
∫ l−x

0

K ′(y)u(x+ y) dy

+ {−K(l + x)u(−l) +K(0)u(x)}+ {K(l − x)u(l)−K(0)u(x)}

=

∫ l+x

0

K ′(y)u(x− y) dy −
∫ l−x

0

K ′(y)u(x+ y) dy

+ {u(l)K(l − x)− u(−l)K(l + x)} . (16)

Comparing (16) and (11), we have

Kl [u
′] (x)−Kl[u]

′(x) = u(l)K(l − x)− u(−l)K(l + x). (17)

Applying (17) to u(q−1) instead of u, we have

Kl

[
u(q)

]
(x)−Kl [u]

(q)
(x)

=

{
Kl

[
u(q)

]
(x)−Kl

[
u(q−1)

]′
(x)

}
+

{
Kl

[
u(q−1)

]′
(x)−Kl [u]

(q)
(x)

}

=

{
Kl

[(
u(q−1)

)′]
(x)−Kl

[
u(q−1)

]′
(x)

}

+
{
Kl

[
u(q−1)

]
(x)−Kl [u]

(q−1)
(x)

}′

=
{
u(q−1)(l)K(l − x)− u(q−1)(−l)K(l + x)

}

+
{
Kl

[
u(q−1)

]
(x)−Kl [u]

(q−1)
(x)

}′
(18)

for q = 1, 2, 3, 4. Applying (18) recursively and using (17), we have

Kl

[
u(4)

]
(x)−Kl [u]

(4)
(x)

=
{
u(3)(l)K(l − x)− u(3)(−l)K(l + x)

}
+
{
Kl

[
u(3)

]
(x)−Kl [u]

(3)
(x)

}′
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=
{
u(3)(l)K(l − x)− u(3)(−l)K(l + x)

}

+ {u′′(l)K(l − x)− u′′(−l)K(l + x)}′ + {Kl [u
′′] (x)−Kl [u]

′′
(x)

}′′

=
{
u(3)(l)K(l − x)− u(3)(−l)K(l + x)

}

+ {u′′(l)K(l − x)− u′′(−l)K(l + x)}′

+ {u′(l)K(l − x)− u′(−l)K(l + x)}′′ + {Kl [u
′] (x)−Kl [u]

′
(x)

}(3)

=
{
u(3)(l)K(l − x)− u(3)(−l)K(l + x)

}

+ {u′′(l)K(l − x)− u′′(−l)K(l + x)}′

+ {u′(l)K(l − x)− u′(−l)K(l + x)}′′

+ {u(l)K(l − x)− u(−l)K(l + x)}(3)

=

3∑

j=0

{
(−1)j u(3−j)(l)K(j)(l − x)− u(3−j)(−l)K(j)(l + x)

}
,

which completes the proof. ¤
From Lemmas 2.3 and 2.4, we obtain the following necessary and sufficient

condition for being an eigenfunction of Kl. Note that an eigenfunction of Kl

must be in C4[−l, l] by Lemmas 2.1 and 2.3.

Lemma 2.5. Let u ∈ L2[−l, l]. Then Kl[u] = λu for some λ ∈ C, if and only if
u ∈ C4[−l, l], and u is a solution to the following fourth-order linear boundary
value problem:

λu(4) +

(
λ− 1

k

)
α4u = 0, (19)

u(3)(l) +
√
2αu′′(l) + α2u′(l) = 0, (20)

u(3)(−l)−
√
2αu′′(−l) + α2u′(−l) = 0, (21)

u(3)(l)− α2u′(l)−
√
2α3u(l) = 0, (22)

u(3)(−l)− α2u′(−l) +
√
2α3u(−l) = 0. (23)

Proof. Suppose Kl[u] = λu for some λ ∈ C. Then (6) in Lemma 2.3 becomes

λu(4) = −α4λu+
α4

k
u

which is equivalent to (19). Applying Kl to (19) and using (6) in Lemma 2.3,
we have

0 = λKl

[
u(4)

]
+

(
λ− 1

k

)
α4 Kl[u]

= λ
{
Kl

[
u(4)

]
−Kl[u]

(4)
}
+ λ

{
−α4Kl[u] +

α4

k
u

}
+

(
λ− 1

k

)
α4 Kl[u]
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= λ
{
Kl

[
u(4)

]
−Kl[u]

(4)
}
+

λα4

k
u− α4

k
Kl[u],

= λ
{
Kl

[
u(4)

]
−Kl[u]

(4)
}
. (24)

Suppose λ = 0. Then we have u = 0 1 by (19), and hence, u clearly satisfies
(20)–(23). Suppose λ 6= 0. Then by Lemma 2.4, (24) is equivalent to

3∑

j=0

(−1)ju(3−j)(l)K(j)(l − x) ≡
3∑

j=0

u(3−j)(−l)K(j)(l + x)

which, by Proposition 2.2, is in turn equivalent to

3∑

j=0

(−1)ju(3−j)(l)
αj+1

2k
exp

{
− α√

2
(l − x)

}
sin

{
α√
2
(l − x) +

(3j + 1)π

4

}

≡
3∑

j=0

u(3−j)(−l)
αj+1

2k
exp

{
− α√

2
(l + x)

}
sin

{
α√
2
(l + x) +

(3j + 1)π

4

}
,

and hence, is again equivalent to

3∑

j=0

(−1)ju(3−j)(l)
αj+1

2k
sin

{
α√
2
(l − x) +

(3j + 1)π

4

}

≡ exp
(
−
√
2αx

)
·

3∑

j=0

u(3−j)(−l)
αj+1

2k
sin

{
α√
2
(l + x) +

(3j + 1)π

4

}
. (25)

Note that the functional identity (25) holds, if and only if both sides of (25) are
identically zero. Thus the following two conditions together are equivalent to
(25):

3∑

j=0

(−1)j αj u(3−j)(l) sin

{
α√
2
(l − x) +

(3j + 1)π

4

}
≡ 0, (26)

3∑

j=0

αj u(3−j)(−l) sin

{
α√
2
(l + x) +

(3j + 1)π

4

}
≡ 0. (27)

Since

sin
(
z +

π

4

)
= cos

(π
4

)
sin z + sin

(π
4

)
cos z =

1√
2
sin z +

1√
2
cos z,

sin

(
z +

4π

4

)
= cos

(
4π

4

)
sin z + sin

(
4π

4

)
cos z = − sin z,

sin

(
z +

7π

4

)
= cos

(
7π

4

)
sin z + sin

(
7π

4

)
cos z =

1√
2
sin z − 1√

2
cos z,

1In fact, this shows that the linear operator Kl is one-to-one, and the only eigenfunction of
Kl with the zero eigenvalue is the zero function.
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sin

(
z +

10π

4

)
= cos

(
10π

4

)
sin z + sin

(
10π

4

)
cos z = cos z,

(26) is equivalent to

0 ≡ u(3)(l)

[
1√
2
sin

{
α√
2
(l − x)

}
+

1√
2
cos

{
α√
2
(l − x)

}]

− αu′′(l)
[
− sin

{
α√
2
(l − x)

}]

+ α2u′(l)
[

1√
2
sin

{
α√
2
(l − x)

}
− 1√

2
cos

{
α√
2
(l − x)

}]

− α3u(l) cos

{
α√
2
(l − x)

}

=
1√
2

[{
u(3)(l) +

√
2αu′′(l) + α2u′(l)

}
sin

{
α√
2
(l − x)

}

+
{
u(3)(l)− α2u′(l)−

√
2α3u(l)

}
cos

{
α√
2
(l − x)

}]
, (28)

and (27) is equivalent to

0 ≡ u(3)(−l)

[
1√
2
sin

{
α√
2
(l + x)

}
+

1√
2
cos

{
α√
2
(l + x)

}]

+ αu′′(−l)

[
− sin

{
α√
2
(l + x)

}]

+ α2u′(−l)

[
1√
2
sin

{
α√
2
(l + x)

}
− 1√

2
cos

{
α√
2
(l + x)

}]

+ α3u(−l) cos

{
α√
2
(l + x)

}

=
1√
2

[{
u(3)(−l)−

√
2αu′′(−l) + α2u′(−l)

}
sin

{
α√
2
(l + x)

}

+
{
u(3)(−l)− α2u′(−l) +

√
2α3u(−l)

}
cos

{
α√
2
(l + x)

}]
. (29)

Since sin z, cos z are linearly independent functions, (28) is equivalent to (20),
(22), and (29) is equivalent to (21), (23).

Conversely, suppose u satisfies (19) and (20)–(23). If λ = 0, then u = 0 by
(19), and hence, Kl[u] = 0 = 0 · u. Suppose λ 6= 0. By applying Kl on (19) and
using (6) in Lemma 2.3, we get

0 = λKl

[
u(4)

]
+

(
λ− 1

k

)
α4 Kl[u]

= λ
{
Kl

[
u(4)

]
−Kl[u]

(4)
}
+ λ

{
−α4Kl[u] +

α4

k
u

}
+

(
λ− 1

k

)
α4 Kl[u]
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= λ
{
Kl

[
u(4)

]
−Kl[u]

(4)
}
+

λα4

k
u− α4

k
Kl[u],

and hence, by the equivalence between (20)–(23) and (24) as shown above, we
have

Kl[u]− λu =
k

α4
· λ

{
Kl

[
u(4)

]
−Kl[u]

(4)
}
= 0,

which completes the proof. ¤

3. Eigenvalues of Kl outside of (0, 1/k)

It is easy to see that Kl is a self-adjoint operator, and it is well-known [15]
that all the eigenvalues of a self-adjoint operator are real, and the eigenspace
corresponding to each eigenvalue is spanned by real eigenfunctions. Thus it
suffices to deal with only real eigenfunctions and eigenvalues.

In this section, we will try to find nontrivial eigenvalues ofKl using Lemma 2.5.
Note that the solution space of the differential equation (19) changes qualita-
tively according to the sign of the quantity 1− 1/(λk). Specifically, we have the
following three cases:

(I) 1− 1/(λk) = 0: λ = 1/k.
(II) 1− 1/(λk) > 0: λ < 0 or λ > 1/k.
(III) 1− 1/(λk) < 0: 0 < λ < 1/k.

The cases (I) and (II) will be considered in Sections 3.1 and 3.2 respectively.
It turns out that there are no eigenvalues in these two cases. This will lead to
the conclusions in Section 4 on the properties of Kl. The case (III), where the
eigenvalues of Kl do exist, is analyzed in [2].

3.1. The case (I). This corresponds to λ = 1/k. Suppose 1/k is an eigenvalue
of Kl. Then there exists a nonzero u ∈ L2[−l, l] which satisfies (19) and (20)–(23)
in Lemma 2.5. We can assume u is a real function. In this case, (19) becomes
u(4) = 0, and its general (real) solution is

u(x) = A+Bx+ Cx2 +Dx3, A,B,C,D ∈ R,
and hence,

u′(x) = B + 2Cx+ 3Dx2, u′′(x) = 2C + 6Dx, u(3)(x) = 6D.

So the boundary conditions (20)–(23) respectively become

0 = u(3)(l) +
√
2αu′′(l) + α2u′(l)

= 6D +
√
2α (2C + 6Dl) + α2

(
B + 2Cl + 3Dl2

)

= α2B + 2
(
lα2 +

√
2α

)
C + 3

(
l2α2 + 2

√
2lα+ 2

)
D, (30)

0 = u(3)(−l)−
√
2αu′′(−l) + α2u′(−l)

= 6D −
√
2α (2C − 6Dl) + α2

(
B − 2Cl + 3Dl2

)

= α2B − 2
(
lα2 +

√
2α

)
C + 3

(
l2α2 + 2

√
2lα+ 2

)
D, (31)
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0 = u(3)(l)− α2u′(l)−
√
2α3u(l)

= 6D − α2
(
B + 2Cl + 3Dl2

)−
√
2α3

(
A+Bl + Cl2 +Dl3

)

= −
√
2α3A−

(√
2lα3 + α2

)
B −

(√
2l2α3 + 2lα2

)
C

−
(√

2l3α3 + 3l2α2 − 6
)
D, (32)

0 = u(3)(−l)− α2u′(−l) +
√
2α3u(−l)

= 6D − α2
(
B − 2Cl + 3Dl2

)
+
√
2α3

(
A−Bl + Cl2 −Dl3

)

=
√
2α3A−

(√
2lα3 + α2

)
B +

(√
2l2α3 + 2lα2

)
C

−
(√

2l3α3 + 3l2α2 − 6
)
D. (33)

By adding and subtracting (30), (31) and (32), (33) respectively, we have

0 = α2B + 3
(
l2α2 + 2

√
2lα+ 2

)
D, (34)

0 = 2
(
lα2 +

√
2α

)
C, (35)

0 =
√
2α3A+

(√
2l2α3 + 2lα2

)
C, (36)

0 =
(√

2lα3 + α2
)
B +

(√
2l3α3 + 3l2α2 − 6

)
D. (37)

We have C = 0 from (35), and hence A = 0 from (36). (34) and (37) together
can be written as

A ·
(
B
D

)
=

(
0
0

)
,

where

A :=

(
α2 3

(
l2α2 + 2

√
2lα+ 2

)
√
2lα3 + α2

√
2l3α3 + 3l2α2 − 6

)
.

Since

detA = α2
(√

2l3α3 + 3l2α2 − 6
)
− 3

(
l2α2 + 2

√
2lα+ 2

)(√
2lα3 + α2

)

= −α2
(
2
√
2l3α3 + 12l2α2 + 12

√
2lα+ 12

)
6= 0,

we get B = D = 0. It follows that u ≡ 0, which is a contradiction. Thus we
conclude:

Lemma 3.1. 1/k is not an eigenvalue of Kl for every l > 0.

3.2. The case (II). This corresponds to the case λ < 0 or λ > 1/k, which
we will assume throughout this section. Suppose λ is an eigenvalue of Kl, and
u ∈ L2[−l, l] is a corresponding nonzero eigenfunction. Then by Lemma 2.5, λ,
u satisfies (19) and (20)–(23). We can also assume u is a real function. Denote

κ :=
4

√
1− 1

λk
> 0.
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Then (19) becomes

0 = u(4) +

(
1− 1

λk

)
α4u = u(4) + κ4α4u,

and its general (real) solution is

u(x) = A c+(x) +B s+(x) + C c−(x) +D s−(x)

=
(
A B C D

)



c+(x)
s+(x)
c−(x)
s−(x)


 , A,B,C,D ∈ R,

where we denote

c±(x) = exp

(
± κα√

2
x

)
cos

(
κα√
2
x

)
, s±(x) = exp

(
± κα√

2
x

)
sin

(
κα√
2
x

)
.

Note that

c′±(x) =
κα√
2
exp

(
± κα√

2
x

){
± cos

(
κα√
2
x

)
− sin

(
κα√
2
x

)}

=
κα√
2
{± c±(x)− s±(x)} ,

s′±(x) =
κα√
2
exp

(
± κα√

2
x

){
cos

(
κα√
2
x

)
± sin

(
κα√
2
x

)}

=
κα√
2
{ c±(x)± s±(x)} ,

which can be written as(
c±(x)
s±(x)

)′
=

κα√
2
B± ·

(
c±(x)
s±(x)

)
,

where we denote

B± :=

(±1 −1
1 ±1

)
.

Thus, denoting

B :=

(
B+ O
O B−

)
=




1 −1 0 0
1 1 0 0
0 0 −1 −1
0 0 1 −1


 ,

we have 


c+(x)
s+(x)
c−(x)
s−(x)




′

=
κα√
2
B ·




c+(x)
s+(x)
c−(x)
s−(x)


 .

Note that

B2
± = 2

(
0 ∓1
±1 0

)
, B3

± = 2

(∓1 −1
1 ∓1

)
,
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and hence,

B2 = 2




0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0


 , B3 = 2




−1 −1 0 0
1 −1 0 0
0 0 1 −1
0 0 1 1


 .

So we have

u′(x) =
(
A B C D

)



c+(x)
s+(x)
c−(x)
s−(x)




′

=
(
A B C D

) · κα√
2
B ·




c+(x)
s+(x)
c−(x)
s−(x)




=
κα√
2

(
A B C D

)



c+(x)− s+(x)
c+(x) + s+(x)

− c−(x)− s−(x)
c−(x)− s−(x)


 ,

u′′(x) =
(
A B C D

) ·
(
κα√
2

)2

B2 ·




c+(x)
s+(x)
c−(x)
s−(x)




= (κα)
2 (A B C D

)



− s+(x)
c+(x)
s−(x)

− c−(x)


 ,

u(3)(x) =
(
A B C D

) ·
(
κα√
2

)3

B3 ·




c+(x)
s+(x)
c−(x)
s−(x)




=
1√
2
(κα)

3 (A B C D
)



− c+(x)− s+(x)
c+(x)− s+(x)
c−(x)− s−(x)
c−(x) + s−(x)


 .

Hence we have

u(3)(x)±
√
2αu′′(x) + α2u′(x)

=
κα3

√
2

(
A B C D

) ·

·


κ2




− c+(x)− s+(x)
c+(x)− s+(x)
c−(x)− s−(x)
c−(x) + s−(x)


± 2κ




− s+(x)
c+(x)
s−(x)

− c−(x)


+




c+(x)− s+(x)
c+(x) + s+(x)

− c−(x)− s−(x)
c−(x)− s−(x)
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=
κα3

√
2

(
A B C D

)



− (
κ2 − 1

)
c+(x)−

(
κ2 ± 2κ+ 1

)
s+(x)(

κ2 ± 2κ+ 1
)
c+(x)−

(
κ2 − 1

)
s+(x)(

κ2 − 1
)
c−(x)−

(
κ2 ∓ 2κ+ 1

)
s−(x)(

κ2 ∓ 2κ+ 1
)
c−(x) +

(
κ2 − 1

)
s−(x)


 , (38)

u(3)(x)− α2u′(x)∓
√
2α3u(x)

=
α3

√
2

(
A B C D

) ·

κ3




− c+(x)− s+(x)
c+(x)− s+(x)
c−(x)− s−(x)
c−(x) + s−(x)


− κ




c+(x)− s+(x)
c+(x) + s+(x)

− c−(x)− s−(x)
c−(x)− s−(x)


∓ 2




c+(x)
s+(x)
c−(x)
s−(x)







=
α3

√
2

(
A B C D

)



− (
κ3 + κ± 2

)
c+(x)−

(
κ3 − κ

)
s+(x)(

κ3 − κ
)
c+(x)−

(
κ3 + κ± 2

)
s+(x)(

κ3 + κ∓ 2
)
c−(x)−

(
κ3 − κ

)
s−(x)(

κ3 − κ
)
c−(x) +

(
κ3 + κ∓ 2

)
s−(x)


 . (39)

Using (38) and (39), the boundary conditions (20)–(23) respectively become

0 =
(
A B C D

)



− (
κ2 − 1

)
c+(l)−

(
κ2 + 2κ+ 1

)
s+(l)(

κ2 + 2κ+ 1
)
c+(l)−

(
κ2 − 1

)
s+(l)(

κ2 − 1
)
c−(l)−

(
κ2 − 2κ+ 1

)
s−(l)(

κ2 − 2κ+ 1
)
c−(l) +

(
κ2 − 1

)
s−(l)


 ,

0 =
(
A B C D

)



− (
κ2 − 1

)
c+(−l)− (

κ2 − 2κ+ 1
)
s+(−l)(

κ2 − 2κ+ 1
)
c+(−l)− (

κ2 − 1
)
s+(−l)(

κ2 − 1
)
c−(−l)− (

κ2 + 2κ+ 1
)
s−(−l)(

κ2 + 2κ+ 1
)
c−(−l) +

(
κ2 − 1

)
s−(−l)




=
(
A B C D

)



− (
κ2 − 1

)
c−(l) +

(
κ2 − 2κ+ 1

)
s−(l)(

κ2 − 2κ+ 1
)
c−(l) +

(
κ2 − 1

)
s−(l)(

κ2 − 1
)
c+(l) +

(
κ2 + 2κ+ 1

)
s+(l)(

κ2 + 2κ+ 1
)
c+(l)−

(
κ2 − 1

)
s+(l)


 ,

0 =
(
A B C D

)



− (
κ3 + κ+ 2

)
c+(l)−

(
κ3 − κ

)
s+(l)(

κ3 − κ
)
c+(l)−

(
κ3 + κ+ 2

)
s+(l)(

κ3 + κ− 2
)
c−(l)−

(
κ3 − κ

)
s−(l)(

κ3 − κ
)
c−(l) +

(
κ3 + κ− 2

)
s−(l)


 ,

0 =
(
A B C D

)



− (
κ3 + κ− 2

)
c+(−l)− (

κ3 − κ
)
s+(−l)(

κ3 − κ
)
c+(−l)− (

κ3 + κ− 2
)
s+(−l)(

κ3 + κ+ 2
)
c−(−l)− (

κ3 − κ
)
s−(−l)(

κ3 − κ
)
c−(−l) +

(
κ3 + κ+ 2

)
s−(−l)




=
(
A B C D

)



− (
κ3 + κ− 2

)
c−(l) +

(
κ3 − κ

)
s−(l)(

κ3 − κ
)
c−(l) +

(
κ3 + κ− 2

)
s−(l)(

κ3 + κ+ 2
)
c+(l) +

(
κ3 − κ

)
s+(l)(

κ3 − κ
)
c+(l)−

(
κ3 + κ+ 2

)
s+(l)


 ,



42 Sung Woo Choi

and hence are equivalent to
(
A B C D

) ·P = O, (40)

where P is the following 4× 4 matrix

P =




− (
κ2 − 1

)
c+(l)− (κ+ 1)2 s+(l) − (

κ2 − 1
)
c−(l) + (κ− 1)2 s−(l)

(κ+ 1)2 c+(l)−
(
κ2 − 1

)
s+(l) (κ− 1)2 c−(l) +

(
κ2 − 1

)
s−(l)(

κ2 − 1
)
c−(l)− (κ− 1)2 s−(l)

(
κ2 − 1

)
c+(l) + (κ+ 1)2 s+(l)

(κ− 1)2 c−(l) +
(
κ2 − 1

)
s−(l) (κ+ 1)2 c+(l)−

(
κ2 − 1

)
s+(l)

− (
κ3 + κ+ 2

)
c+(l)−

(
κ3 − κ

)
s+(l) − (

κ3 + κ− 2
)
c−(l) +

(
κ3 − κ

)
s−(l)(

κ3 − κ
)
c+(l)−

(
κ3 + κ+ 2

)
s+(l)

(
κ3 − κ

)
c−(l) +

(
κ3 + κ− 2

)
s−(l)(

κ3 + κ− 2
)
c−(l)−

(
κ3 − κ

)
s−(l)

(
κ3 + κ+ 2

)
c+(l) +

(
κ3 − κ

)
s+(l)(

κ3 − κ
)
c−(l) +

(
κ3 + κ− 2

)
s−(l)

(
κ3 − κ

)
c+(l)−

(
κ3 + κ+ 2

)
s+(l)


 .

Note that the assumption that u is nonzero is equivalent to the existence of
nontrivial (A B C D) satisfying (40). Clearly, this again is equivalent to detP =
0. Thus λ is an eigenvalue of Kl, if and only if detP = 0.

Involved computation 2 reveals the following determinant of P:

detP

= 4e−2
√
2lακ

[
(κ− 1)

4 (
κ2 + 1

)2
+ e4

√
2lακ (κ+ 1)

4 (
κ2 + 1

)2

− 4e2
√
2lακ

(
κ4 − 1

)2
+ 2e2

√
2lακ

(
κ2 − 1

)2 ·
·
{(

κ4 − 6κ2 + 1
)
cos

(
2
√
2lακ

)
+ 4κ

(
κ2 − 1

)
sin

(
2
√
2lακ

)}]
. (41)

Denote the following expression in (41) by b:

b :=
(
κ4 − 6κ2 + 1

)
cos

(
2
√
2lακ

)
+ 4κ

(
κ2 − 1

)
sin

(
2
√
2lακ

)
.

Since (
κ4 − 6κ2 + 1

)2
+
{
4κ

(
κ2 − 1

)}2
=

(
κ2 + 1

)4
,

we have

b =
(
κ2 + 1

)2
{
κ4 − 6κ2 + 1

(κ2 + 1)
2 · cos

(
2
√
2lακ

)
+

4κ
(
κ2 − 1

)

(κ2 + 1)
2 · sin

(
2
√
2lακ

)}

=
(
κ2 + 1

)2 {
cos ĝ(κ) · cos

(
2
√
2lακ

)
+ sin ĝ(κ) · sin

(
2
√
2lακ

)}

=
(
κ2 + 1

)2
cos

(
2
√
2lακ− ĝ(κ)

)
(42)

2This long and arduous computation can be facilitated with the help of symbolic compu-
tation tools, or “computer algebra systems (CAS)”, such as Macsyma, Maple, Mathematica,
Reduce.
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for some function ĝ(κ) of κ. Specifically, we define ĝ by

ĝ(κ) :=





arctan

{
4κ(κ2−1)
κ4−6κ2+1

}
if 0 ≤ κ <

√
2− 1,

−π
2 if κ =

√
2− 1,

−π + arctan

{
4κ(κ2−1)
κ4−6κ2+1

}
if
√
2− 1 < κ <

√
2 + 1,

− 3π
2 if κ =

√
2 + 1,

−2π + arctan

{
4κ(κ2−1)
κ4−6κ2+1

}
if κ >

√
2 + 1,

where the branch of arctan is taken such that arctan(0) = 0. Note that

κ4 − 6κ2 + 1 =
{
κ2 −

(
3− 2

√
2
)}{

κ2 −
(
3 + 2

√
2
)}

=

(
κ+

√
3− 2

√
2

)(
κ−

√
3− 2

√
2

)(
κ+

√
3 + 2

√
2

)(
κ−

√
3 + 2

√
2

)

=
{
κ+

(√
2− 1

)}{
κ−

(√
2− 1

)}{
κ+

(√
2 + 1

)}{
κ−

(√
2 + 1

)}
,

and hence,

4κ
(
κ2 − 1

)

κ4 − 6κ2 + 1

=
4κ(κ+ 1){

κ+
(√

2− 1
)} {

κ+
(√

2 + 1
)} · κ− 1{

κ− (√
2− 1

)} {
κ− (√

2 + 1
)} .

So it is easy to see that ĝ thus defined is continuous. In fact, we have

ĝ′(κ)

=
1

1 +
(

4κ(κ2−1)
κ4−6κ2+1

)2 ·
(

4κ(κ2 − 1)

κ4 − 6κ2 + 1

)′
= −

(
κ4 − 6κ2 + 1

)2

(κ2 + 1)
4 · 4

(
κ2 + 1

)3

(κ4 − 6κ2 + 1)
2

= − 4

κ2 + 1
< 0. (43)

Thus ĝ is also real-analytic, and strictly decreasing from ĝ(0) = 0 to limκ→∞ ĝ(κ)
= −2π.

Define

g(κ) := 2
√
2lακ− ĝ(κ), κ ≥ 0.

Then g is real-analytic too, and, for κ ≥ 0, the Taylor expansion of g(κ) is

g(κ) = g(0) + g′(0)κ+
1

2
g′′(0)κ2 +

1

6
g(3)(0)κ3 + · · ·

=
(
2
√
2lα+ 4

)
κ− 4

3
κ3 + · · · , (44)
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since

g′(κ) = 2
√
2lα+

4

κ2 + 1
,

g′′(κ) = −4
(
κ2 + 1

)′

(κ2 + 1)
2 = − 8κ

(κ2 + 1)
2 ,

g(3)(κ) =
−8 · (κ2 + 1

)2
+ 8κ · 2 (κ2 + 1

) · 2κ
(κ2 + 1)

4 =
8
(
3κ2 − 1

)

(κ2 + 1)
3

by (43) and the definition of g(κ),
Using the function g(κ), (42) becomes

b =
(
κ2 + 1

)2
cos g(κ),

and hence, the determinant of P in (41) can be rewritten as

detP = 4e−2
√
2lακ

{
(κ− 1)

4 (
κ2 + 1

)2
+ e4

√
2lακ (κ+ 1)

4 (
κ2 + 1

)2

−4e2
√
2lακ

(
κ4 − 1

)2
+ 2e2

√
2lακ

(
κ2 − 1

)2 · (κ2 + 1
)2

cos g(κ)
}

= 4e−2
√
2lακ

{
(κ+ 1)

4 (
κ2 + 1

)2 ·
(
e2

√
2lακ

)2

+ (κ− 1)
4 (

κ2 + 1
)2

−2
(
κ2 + 1

)2 (
κ2 − 1

)2
(2− cos g(κ)) · e2

√
2lακ

}

= 4
(
κ2 + 1

)2
e−2

√
2lακ

{
(κ+ 1)

4 ·
(
e2

√
2lακ

)2

+ (κ− 1)
4

−2
(
κ2 − 1

)2
(2− cos g(κ)) · e2

√
2lακ

}
. (45)

It follows from (45) that the equation detP = 0 is equivalent to

e2
√
2lακ =

1

(κ+ 1)
4 ·

{(
κ2 − 1

)2
(2− cos g(κ))

±
√
(κ2 − 1)

4
(2− cos g(κ))

2 − (κ+ 1)
4 · (κ− 1)

4

}

which, after simplification of the right side, is equivalent to

e2
√
2lακ =

(
κ− 1

κ+ 1

)2

·
{
2− cos g(κ)±

√
(2− cos g(κ))

2 − 1

}
. (46)

Define

ϕ(t) := 2− cos t+

√
(2− cos t)

2 − 1.

Then, one can easily find out that the Taylor expansion of ϕ(t) is

ϕ(t) = 1 + t+
1

2
t2 +

1

12
t3 + · · · , t ≥ 0. (47)

Lemma 3.2. detP 6= 0 for every κ > 0. Consequently, there is no eigenvalue
λ of Kl such that λ < 0 or λ > 1/k.
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Proof. Suppose κ > 0. It is sufficient to show

e2
√
2lακ >

(
κ− 1

κ+ 1

)2

· ϕ (g(κ)) , (48)

from which the proof follows, since (48) implies that there is no κ > 0 satisfying
(46), and hence, the equation detP = 0. (48) is equivalent to

(κ+ 1)
2
e2

√
2lακ − (κ− 1)

2
ϕ (g(κ)) > 0. (49)

By (44), (47), and the Taylor expansion et = 1 + t+ 1
2 t

2 + 1
6 t

3 + · · · , we have

(κ+ 1)
2
e2

√
2lακ

= (κ+ 1)
2

{
1 + 2

√
2lακ+

1

2

(
2
√
2lακ

)2

+
1

6

(
2
√
2lακ

)3

+ · · ·
}

= 1 +
(
2 + 2

√
2lα

)
κ+

(
1 + 4

√
2lα+ 4l2α2

)
κ2

+

(
2
√
2lα+ 8l2α2 +

8
√
2

3
l3α3

)
κ3 + · · · ,

(κ− 1)
2
ϕ (g(κ))

= (κ− 1)
2

[
1 +

{(
2
√
2lα+ 4

)
κ− 4

3
κ3 + · · ·

}

+
1

2

{(
2
√
2lα+ 4

)
κ− 4

3
κ3 + · · ·

}2

+
1

12

{(
2
√
2lα+ 4

)
κ− 4

3
κ3 + · · ·

}3
]

= 1 +
{
−2 +

(
2
√
2lα+ 4

)}
κ+

{
1− 2

(
2
√
2lα+ 4

)
+

1

2

(
2
√
2lα+ 4

)2
}
κ2

+

{(
2
√
2lα+ 4

)
−
(
2
√
2lα+ 4

)2

− 4

3
+

1

12

(
2
√
2lα+ 4

)3
}
κ3 + · · ·

= 1 +
(
2 + 2

√
2lα

)
κ+

(
1 + 4

√
2lα+ 4l2α2

)
κ2

+

(
−8− 6

√
2lα+

4
√
2

3
l3α3

)
κ3 + · · · ,

and hence,

(κ+ 1)
2
e2

√
2lακ − (κ− 1)

2
ϕ (g(κ))

=

(
8 + 8

√
2lα+ 8l2α2 +

4
√
2

3
l3α3

)
κ3 + · · ·
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=

(
8 + 8

√
2lα+ 8l2α2 +

4
√
2

3
l3α3

)
κ̃3

for some 0 < κ̃ < κ. This shows (49), and hence, (48). Thus the proof is
complete. ¤

4. Main results

We translate and summarize the results of the previous sections. First, the
positiveness of Kl follows immediately, since all the nontrivial eigenvalues of Kl

are positive by Lemma 3.2.

Theorem 4.1. For every l > 0, Kl is a positive operator.

Even though the domain and the range of the operator Kl is the same space
L2[−l, l], the physical dimensions for these two spaces are different from each
other. Let L,M,S be physical dimensions representing length, mass, time re-
spectively. The dimension of w, the input load distribution in (2), is that of
force per length, and hence MS−2. The dimension of u, the output deflection
in (2), is that of length L. Note that Kl takes w ∈ L2[−l, l] as the input and
transforms it to the output u ∈ L2[−l, l] in (4). In this process, Kl performs
the dimension change from MS−2 to L. This amounts to multiplying LM−1S2,
which is exactly the dimension of the constant 1/k. Thus the actual dimension-
free norm of Kl should be k · ‖Kl‖. This leads us to the following conclusion,
since ‖Kl‖ < 1/k by Lemmas 3.1 and 3.2.

Theorem 4.2. For every l > 0, ‖Kl‖ < 1/k, and hence, the dimension-free
norm k·‖Kl‖ of Kl is less than 1. Consequently, Kl is a contraction in dimension-
free context.
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