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A KOROVKIN TYPE APPROXIMATION THEOREM FOR
DOUBLE SEQUENCES OF POSITIVE LINEAR OPERATORS

OF TWO VARIABLES IN A-STATISTICAL SENSE

Kamil Demirci and Fadime Dirik

Abstract. In this paper, we obtain a Korovkin type approximation the-
orem for double sequences of positive linear operators of two variables
from Hw (K) to C (K) via A-statistical convergence. Also, we construct
an example such that our new approximation result works but its classi-
cal case does not work. Furthermore, we study the rates of A-statistical
convergence by means of the modulus of continuity.

1. Introduction

For a sequence (Ln) of positive linear operators on C (X), the space of real
valued continuous functions on a compact subset X of real numbers, Korovkin
[12] established first the necessary and sufficient conditions for the uniform
convergence of Ln (f) to a function f by using the test function ei defined
by ei (x) = xi, (i = 0, 1, 2) (see, for instance, [3]). Later many researchers
investigated these conditions for various operators defined on different spaces.
Using the concept of statistical convergence in approximation theory provides
us with many advantages. In particular, the matrix summability methods of
Cesáro type are strong enough to correct the lack of convergence of various
sequences of linear operators such as the interpolation operator of Hermite-
Fejér [4], because these types of operators do not converge at points of simple
discontinuity. Furthermore, in recent years, with the help of the concept of
uniform statistical convergence, which is a regular (non-matrix) summability
transformation, various statistical approximation results have been proved [1,
2, 6, 5, 8, 11]. Then, it was demonstrated that those results are more powerful
than the classical Korovkin theorem. Also, Erkuş and Duman [7] have studied
a Korovkin type approximation theorem via A-statistical convergence in the
space Hω

(
I2

)
where I2 = [0,∞)× [0,∞). Our primary interest in the present
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paper is to obtain a general Korovkin type approximation theorem for double
sequences of positive linear operators of two variables from Hω (K) to C (K)
where K = [0, A]× [0, B] , A, B ∈ (0, 1) via A-statistical convergence.

Let us first remind of the concept of A-statistical convergence for double
sequences.

A double sequence x = (xm,n) is said to be convergent in Pringsheim’s sense
if, for every ε > 0, there exists N = N(ε) ∈ N, the set of all natural numbers,
such that |xm,n − L| < ε whenever m,n > N , where L is called the Pringsheim
limit of x and denoted by P − lim

m,n
xm,n = L (see [15]). We shall call such an x,

briefly, “P -convergent”. A double sequence is called bounded if there exists a
positive number M such that |xm,n| ≤ M for all (m,n) ∈ N2 = N × N. Note
that in contrast to the case for single sequences, a convergent double sequence
need not to be bounded. Let A = (aj,k,m,n) be a four-dimensional summability
matrix. For a given double sequence x = (xm,n), the A-transform of x, denoted
by Ax := ((Ax)j,k), is given by

(Ax)j,k =
∑

(m,n)∈N2

aj,k,m,nxm,n

provided the double series converges in Pringsheim’s sense for every (j, k) ∈ N2.
A two dimensional matrix transformation is said to be regular if it maps

every convergent sequence in to a convergent sequence with the same limit. The
well-known characterization for two dimensional matrix transformations which
are regular is known as Silverman-Toeplitz conditions (see, for instance, [10]).
In 1926, Robinson [16] presented a four dimensional analog of the regularity
by considering an additional assumption of boundedness. This assumption was
made because a double P -convergent sequence is not necessarily bounded. The
definition and the characterization of regularity for four dimensional matrices is
known as Robinson-Hamilton conditions, or briefly, RH-regularity (see [9, 16]).

Recall that a four dimensional matrix A = (aj,k,m,n) is said to be RH-
regular if it maps every bounded P -convergent sequence into a P -convergent
sequence with the same P -limit. The Robinson-Hamilton conditions state that
a four dimensional matrix A = (aj,k,m,n) is RH-regular if and only if

(i) P − lim
j,k

aj,k,m,n = 0 for each (m,n) ∈ N2,

(ii) P − lim
j,k

∑

(m,n)∈N2

aj,k,m,n = 1,

(iii) P − lim
j,k

∑

m∈N
|aj,k,m,n| = 0 for each n ∈ N,

(iv) P − lim
j,k

∑

n∈N
|aj,k,m,n| = 0 for each m ∈ N,

(v)
∑

(m,n)∈N2

|aj,k,m,n| is P -convergent,
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(vi) there exist finite positive integers A and B such that
∑

m,n>B

|aj,k,m,n| <

A holds for every (j, k) ∈ N2.

Now let A = (aj,k,m,n) be a non-negative RH-regular summability matrix,
and let K ⊂ N2. Then the A-density of K is given by

δ
(2)
A {K} := P − lim

j,k

∑

(m,n)∈K(ε)

aj,k,m,n,

where
K(ε) :=

{
(m, n) ∈ N2 : |xm,n − L| ≥ ε

}

provided that the limit on the right-hand side exists in Pringsheim’s sense. A
real double sequence x = (xm,n) is said to be A-statistically convergent to a
number L if, for every ε > 0,

δ
(2)
A {(m, n) ∈ N2 : |xm,n − L| ≥ ε} = 0.

In this case, we write st
(2)
A − lim

m,n
x = L. Clearly, a P -convergent double sequence

is A-statistically convergent to the same value but its converse is not always
true. Also, note that an A-statistically convergent double sequence need not to
be bounded. For example, consider the double sequence x = (xm,n) given by

xm,n =
{

mn, if m and n are squares,
0, otherwise.

We should note that if we take A = C(1, 1), which is the double Cesáro
matrix, then C(1, 1)-statistical convergence coincides with the notion of sta-
tistical convergence for double sequence, which was introduced in [13, 14]:
If E ⊂ N2 is a two-dimensional subset of positive integers, then Ej,k de-
notes the set {(m,n) ∈ E : m ≤ j, n ≤ k} and |Ej,k| denotes the cardinal-
ity of Ej,k. The double natural density of E [13, 14] is given by δ(2)(E) :=
P − lim

j,k

1
jk |Ej,k| , if it exists. The number sequence x = (xm,n) is statisti-

cally convergent to L provided that for every ε > 0, the set E := E(ε) :=
{m ≤ j, n ≤ k : |xm,n − L| ≥ ε} has natural density zero; in that case we write
st(2) − lim

m,n
xm,n = L.

Finally, if we replace the matrix A by the identity matrix for four dimensional
matrices, then A-statistical convergence reduces to the Pringsheim convergence.

2. A Korovkin-type approximation theorem

Throughout this section let I = [0, A], J = [0, B], A,B ∈ (0, 1) and K =
I × J . We denote by C (K) the space of all continuous real valued functions
on K. This space is equipped with the supremum norm

‖f‖ = sup
(x,y)∈K

|f (x, y)| , (f ∈ C (K)) .
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Consider the space Hω (K) of all real valued functions f on K and satisfying

|f (u, v)− f (x, y)| ≤ ω


f ;

√(
u

1− u
− x

1− x

)2

+
(

v

1− v
− y

1− y

)2

 ,

where ω is the modulus of continuity given by, for δ > 0,

ω (f ; δ) := sup
{
|f (u, v)− f (x, y)| : (u, v) , (x, y) ∈ K,

√
(u− x)2 + (v − y)2 ≤ δ

}
.

Then observe that any function in Hω (K) is continuous and bounded on K.
We also use the following test functions

f0(u, v) = 1, f1(u, v) =
u

1− u
, f2(u, v) =

v

1− v
and

f3(u, v) =
(

u

1− u

)2

+
(

v

1− v

)2

.

Now we have the following result.

Theorem 1. Let {Lm,n} be a sequence of positive linear operators from Hω (K)
into C (K) and let A = (aj,k,m,n) be a nonnegative RH-regular summability
matrix. Assume that the following conditions hold:

(2.1) st
(2)
A − lim

m,n
‖Lm,n (fi)− fi ‖ = 0, i = 0, 1, 2, 3.

Then, for any f ∈ Hω (K),

(2.2) st
(2)
A − lim

m,n
‖Lm,n (f)− f ‖ = 0.

Proof. Assume that (2.1) holds. Let f ∈ Hω (K) and (x, y) ∈ K be fixed. After
some simple calculations, using the continuity of f and linearity and positivity
of the operators Lm,n, we obtain

|Lm,n (f ; x, y)− f (x, y)|
≤ C {|Lm,n (f0;x, y)− f0 (x, y)|+ |Lm,n (f1;x, y)− f1 (x, y)|
|Lm,n (f2; x, y)− f2 (x, y)|+ |Lm,n (f3; x, y)− f3 (x, y)|}+ ε,

where C := max
{

ε+N+ 2N
δ2

((
A

1−A

)2

+
(

B
1−B

)2
)

, 4N
δ2

A
1−A , 4N

δ2
B

1−B , 2N
δ2

}
and

N := ‖f‖. Then, taking supremum over (x, y) ∈ K we get

(2.3) ‖Lm,n (f)− f ‖ ≤ ε + C

3∑

i=0

‖Lm,n (fi)− fi‖ .

For a given r > 0, choose ε > 0 such that ε < r. Then, for each i = 0, 1, 2, 3,
setting

U := {(m,n) : ‖Lm,n (f)− f ‖ ≥ r}
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and

Ui :=
{

(m,n) : ‖Lm,n (fi)− fi‖ ≥ r − ε

4C

}
, i = 0, 1, 2, 3,

it follows from (2.3) that

U ⊂
3⋃

i=0

Ui,

which gives, for all (j, k) ∈ N2,

∑

(m,n)∈U

aj,k,m,n ≤
3∑

i=0

∑

(m,n)∈Ui

aj,k,m,n.

Letting j, k →∞ (in any manner) and using (2.1), we obtain (2.2). The proof
is complete. ¤

Remark 1. If we replace the matrix A in Theorem 1 by identity double ma-
trix, then we immediately get the following classical result, which was first
introduced by Taşdelen and Erençin [17].

Corollary 1 ([17]). Let {Lm,n} be a sequence of positive linear operators from
Hω (K) into C (K). Assume that the following conditions hold:

P − lim
m,n

‖Lm,n (fi)− fi ‖ = 0, i = 0, 1, 2, 3.

Then, for any f ∈ Hω (K),

P − lim
m,n

‖Lm,n (f)− f ‖ = 0.

Remark 2. We now show that our result Theorem 1 is stronger than its classical
version Corollary 1. To see this first consider the following Meyer-König and
Zeller operators:

Mm,n(f ;x, y)

(2.4)

= (1− x)m+1 (1− y)n+1
∞∑

k=0

∞∑

l=0

f

(
k

k + m + 1
,

l

l + n + 1

)(
m + k

k

)(
n + l

l

)
xkyl ,

where f ∈ Hω (K), and K = [0, A]× [0, B] , A, B ∈ (0, 1).
Since, for x ∈ [0, A], A ∈ (0, 1),

1
(1− x)m+1 =

∞∑

k=0

(
m + k

k

)
xk,

it is clear that, for all (m,n) ∈ N2,

Mm,n(f0; x, y) = f0 (x, y) .
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Also we obtain

Mm,n(f1; x, y) = (1− x)m+1 (1− y)n+1
∞∑

k=0

∞∑

l=0

k

m + 1

(
m + k

k

)(
n + l

l

)
xkyl

= (1− x)m+1 (1− y)n+1
x
∞∑

k=1

∞∑

l=0

1
m + 1

(m + k)!
m! (k − 1)!

(
n + l

l

)
xk−1yl

= (1− x)m+1 (1− y)n+1
x

1
(1− x)m+2

1
(1− y)n+1

=
x

1− x

and, similarly,

Mm,n(f2; x, y) = (1− x)m+1 (1− y)n+1
∞∑

k=0

∞∑

l=0

l

n + 1

(
m + k

k

)(
n + l

l

)
xkyl

=
y

1− y
.

Finally we get

Mm,n(f3;x, y)

= (1− x)m+1 (1− y)n+1
∞∑

k=0

∞∑

l=0

{(
k

m + 1

)2

+
(

l

n + 1

)2
} (

m + k

k

)(
n + l

l

)
xkyl

= (1− x)m+1 (1− y)n+1
∞∑

k=0

∞∑

l=0

(
k

m + 1

)2 (
m + k

k

)(
n + l

l

)
xkyl

+ (1− x)m+1 (1− y)n+1
∞∑

k=0

∞∑

l=0

(
l

n + 1

)2 (
m + k

k

)(
n + l

l

)
xkyl

= (1− x)m+1 (1− y)n+1 x

m + 1

∞∑

k=1

∞∑

l=0

k

m + 1
(m + k)!

m! (k − 1)!

(
n + l

l

)
xk−1yl

+ (1− x)m+1 (1− y)n+1 y

n + 1

∞∑

k=0

∞∑

l=1

l

n + 1

(
m + k

k

)
(n + l)!

n! (l − 1)!
xkyl−1

= (1− x)m+1 (1− y)n+1 x

m + 1

{
x
∞∑

k=1

∞∑

l=0

(m + k + 1)!
(m + 1)! (k − 1)!

(
n + l

l

)
xk−1yl

+
∞∑

k=0

∞∑

l=0

(
m + k + 1

k

)(
n + l

l

)
xkyl

}

+ (1− x)m+1 (1− y)n+1 y

n + 1

{
∞∑

k=0

∞∑

l=1

(
m + k

k

)
(n + l + 1)!

(n + 1)! (l − 1)!
xkyl−1

+
∞∑

k=0

∞∑

l=0

(
m + k

k

)(
n + l + 1

l

)
xkyl

}
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=
m + 2
m + 1

(
x

1− x

)2

+
1

m + 1
x

1− x
+

n + 2
n + 1

(
y

1− y

)2

+
1

n + 1
y

1− y
.

Hence, by Corollary 1, we know that, for any f ∈ Hω (K) ,

(2.5) P − lim
m,n

‖Mm,n(f)− f‖ = 0.

Now take A = C(1, 1) and define a double sequence {um,n} by

(2.6) um,n =
{

1, if m and n are squares
0, otherwise.

In this case, observe that

(2.7) st
(2)
C(1,1) − lim

m,n
um,n = 0.

However, the sequence (um,n) is not P -convergent. Now using (2.4) and (2.6),
we define the following positive linear operators on Hω (K) as follows:

(2.8) Lm,n(f ;x, y) = (1 + um,n)Mm,n(f ; x, y).

Observe that

‖Lm,n(f0)− f0‖ = um,n,

‖Lm,n(f1)− f1‖ = um,n,

‖Lm,n(f2)− f2‖ = um,n,

‖Lm,n(f3)− f3‖ =

∥∥∥∥∥(1 + um,n)

(
m + 2
m + 1

(
x

1− x

)2

+
1

m + 1
x

1− x

+
n + 2
n + 1

(
y

1− y

)2

+
1

n + 1
y

1− y

)

−
(

x

1− x

)2

−
(

y

1− y

)2
∥∥∥∥∥

≤ D

{
2

m + 1
+

2
n + 1

+ um,n
m + 3
m + 1

+ um,n
n + 3
n + 1

}
,

where D :=
{(

A
1−A

)2

,
(

B
1−B

)2

, A
1−A , B

1−B

}
. Then, since st

(2)
C(1,1)−limm,n um,n

= 0, we obtain st
(2)
C(1,1) − limm,n ‖Lm,n(fi)− fi‖ = 0, i = 0, 1, 2. Now, for a

given ε > 0, it follows from above inequality that
1
jk
|{ m ≤ j, n ≤ k : ‖Lm,n(f3)− f3‖ ≥ ε}|

≤ 1
jk

∣∣∣∣
{

m ≤ j, n ≤ k :
1

m + 1
≥ ε

8D

}∣∣∣∣

+
1
jk

∣∣∣∣
{

m ≤ j, n ≤ k :
1

n + 1
≥ ε

8D

}∣∣∣∣
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+
1
jk

∣∣∣∣
{

m ≤ j, n ≤ k : um,n
m + 3
m + 1

≥ ε

4D

}∣∣∣∣

+
1
jk

∣∣∣∣
{

m ≤ j, n ≤ k : um,n
n + 3
n + 1

≥ ε

4D

}∣∣∣∣ .

Since st
(2)
C(1,1) − limm,n um,n = 0, letting j, k → ∞ (in any manner) we obtain

st
(2)
C(1,1) − limm,n ‖Lm,n(f3)− f3‖ = 0. Hence, the sequence of positive linear

operators {Lm,n} defined by (2.8) satisfies all hypotheses of Theorem 1. So, by
(2.5) and (2.7), we have

st
(2)
C(1,1) − lim

m,n
‖Lm,n(f)− f‖ = 0.

However, since (um,n) is not P -convergent, the sequence {Lm,n(f ; x, y} given
by (2.8) does not converge uniformly to the function f ∈ Hω (K) . So, we
conclude that Corollary 1 does not work for the operators Lm,n in (2.8) while
our Theorem 1 still works.

3. Rate of A-statistical convergence

Various ways of defining rates of convergence in the A-statistical sense for
two-dimensional summability matrices were introduced in [6]. In a similar way,
for four-dimensional summability matrices, we present four different ways to
compute the corresponding rates of A-statistical convergence in Theorem 1.

Definition 1. Let A = (aj,k,m,n) be a non-negative RH-regular summability
matrix and let {αm,n} be a positive non-increasing double sequence. A double
sequence x = {xm,n} is A-statistically convergent to a number L with the rate
of o(αm,n) if for every ε > 0,

P − lim
j,k→∞

1
αj,k

∑

(m,n)∈K(ε)

aj,k,m,n = 0,

where
K(ε) :=

{
(m,n) ∈ N2 : |xm,n − L| ≥ ε

}
.

In this case, we write

xm,n − L = st
(2)
A − o(αm,n) as m,n →∞.

Definition 2. Let A = (aj,k,m,n) and {αm,n} be the same as in Definition 1.
Then, a double sequence x = {xm,n} is A-statistically bounded with the rate
of O(αm,n) if for every ε > 0,

sup
j,k

1
αj,k

∑

(m,n)∈L(ε)

aj,k,m,n < ∞,

where
L(ε) :=

{
(m,n) ∈ N2 : |xm,n| ≥ ε

}
.
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In this case, we write

xm,n = st
(2)
A −O(αm,n) as m,n →∞.

Definition 3. Let A = (aj,k,m,n) and {αm,n} be the same as in Definition 1.
Then, a double sequence x = {xm,n} is A-statistically convergent to a number
L with the rate of om(αm,n) if for every ε > 0,

P − lim
j,k→∞

∑

(m,n)∈M(ε)

aj,k,m,n = 0,

where
M(ε) :=

{
(m,n) ∈ N2 : |xm,n − L| ≥ ε αm,n

}
.

In this case, we write

xm,n − L = st
(2)
A − om(αm,n) as m, n →∞.

Definition 4. Let A = (aj,k,m,n) and {αm,n} be the same as in Definition 1.
Then, a double sequence x = {xm,n} is A-statistically bounded with the rate
of Om(αm,n) if for every ε > 0,

P − lim
j,k

∑

(m,n)∈N(ε)

aj,k,m,n = 0,

where
N(ε) :=

{
(m,n) ∈ N2 : |xm,n| ≥ ε αm,n

}
.

In this case, we write

xm,n − L = st
(2)
A −Om(αm,n) as m,n →∞.

We see from the above statements that, in Definitions 1 and 2 the rate se-
quence {am,n} directly effects the entries of the matrix A = (aj,k,m,n) although,
according to Definitions 3 and 4, the rate is more controlled by the terms of
the sequence x = {xm,n}.

Using these definitions we obtain the following auxiliary result.

Lemma 1. Let {xm,n} and {ym,n} be double sequences. Assume that A =
(aj,k,m,n) is a non-negative RH-regular summability matrix, and let {αm,n}
and

{
βm,n

}
be positive non-increasing sequences. If xm,n−L1 = st

(2)
A −o(αm,n)

and ym,n − L2 = st
(2)
A − o(βm,n), then we have

(i) (xm,n − L1) ∓ (ym,n − L2) = st
(2)
A − o(γm,n) as m, n → ∞, where

γm,n := max
{
αm,n, βm,n

}
for each (m,n) ∈ N2,

(ii) λ(xm,n − L1) = st
(2)
A − o(αm,n) as m,n →∞ for any real number λ.

Furthermore, similar conclusions hold with the symbol “o” replaced by “O”.

Proof. (i) Assume that xm,n − L1 = st
(2)
A − o(αm,n) and ym,n − L2 = st

(2)
A −

o(βm,n). Also, for ε > 0, define

K : =
{
(m,n) ∈ N2 : |(xm,n − L1)∓ (ym,n − L2)| ≥ ε

}
,
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K1 : =
{

(m,n) ∈ N2 : |xm,n − L1| ≥ ε

2

}
,

K2 : =
{

(m,n) ∈ N2 : |ym,n − L2| ≥ ε

2

}
.

Then observe that
K ⊂ K1 ∪K2,

which gives, for all (j, k) ∈ N2,

(3.1)
∑

(m,n)∈K

aj,k,m,n ≤
∑

(m,n)∈K1

aj,k,m,n +
∑

(m,n)∈K2

aj,k,m,n.

Since γm,n = max
{
αm,n, βm,n

}
, by (3.1), we get

(3.2)
1

γj,k

∑

(m,n)∈K

aj,k,m,n ≤ 1
αj,k

∑

(m,n)∈K1

aj,k,m,n +
1

βj,k

∑

(m,n)∈K2

aj,k,m,n.

Now by taking the limit as j, k → ∞ (in any manner) in (3.2) and using the
hypotheses, we conclude that

P − lim
j,k→∞

1
γj,k

∑

(m,n)∈K

aj,k,m,n = 0,

which completes the proof of (i). Since the proof of (ii) is similar, we omit
it. ¤

The above proof can easily be modified to prove the following analogue.

Lemma 2. Let {xm,n} and {ym,n} be double sequences. Assume that A =
(aj,k,m,n) is a non-negative RH-regular summability matrix, and let {αm,n} and{
βm,n

}
be positive non-increasing sequences. If xm,n − L1 = st

(2)
A − om(αm,n)

and ym,n − L2 = st
(2)
A − om(βm,n), then we have

(i) (xm,n − L1) ∓ (ym,n − L2) = st
(2)
A − om(γm,n) as m,n → ∞, where

γm,n := max
{
αm,n, βm,n

}
for each (m,n) ∈ N2,

(ii) λ(xm,n − L1) = st
(2)
A − om(αm,n) as m,n →∞ for any real number λ.

Furthermore, similar conclusions hold with the symbol “om” replaced by “Om”.

Now we have the following result.

Theorem 2. Let {Lm,n} be a sequence of positive linear operators from Hω (K)
into C (K) , and let A = (aj,k,m,n) be a nonnegative RH-regular summability
matrix method. Assume that the following conditions hold:

(i) ‖Lm,n (f0)− f0‖ = st
(2)
A − o(αm,n) as m,n →∞,

(ii) ω (f ; δm,n) = st
(2)
A − o(βm,n) as m,n →∞, where δm,n :=

√‖Lm,n(ϕ)‖
with ϕ(u, v) =

(
u

1−u − x
1−x

)2

+
(

v
1−v − y

1−y

)2

. Then, for any f ∈ Hω (K),

‖Lm,n (f)− f ‖ = st
(2)
A − o(γm,n) as m,n →∞,
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where γm,n := max
{
αm,n, βm,n

}
for each (m,n) ∈ N2. Furthermore, similar

results holds when the symbol “o” is replaced by “O”.

Proof. Let f ∈ Hω (K) and (x, y) ∈ K be fixed. Using linearity and positivity
of the Lm,n, we have, for any (m,n) ∈ N2,

|Lm,n (f ; x, y)− f (x, y)|
= |Lm,n (f (u, v)− f (x, y) ; x, y)− f (x, y) (Lm,n (f0; x, y)− f0 (x, y))|
≤ Lm,n (|f (u, v)− f (x, y)| ;x, y) + N |Lm,n (f0; x, y)− f0 (x, y)|

≤ ω (f ; δ)Lm,n


1 +

√(
u

1−u − x
1−x

)2

+
(

v
1−v − y

1−y

)2

δ
; x, y




+ N |Lm,n (f0; x, y)− f0 (x, y)|

≤ ω (f ; δ) |Lm,n (f0; x, y)− f0 (x, y)|+ ω (f ; δ)
δ2 Lm,n(ϕ;x, y) + ω (f ; δ)

+ N |Lm,n (f0; x, y)− f0 (x, y)| ,
where N := ‖f‖ . Taking supremum over (x, y) ∈ D on the both-sides of the
above inequality, we obtain, for any δ > 0,

‖Lm,nf − f‖ ≤ ω (f ; δ) ‖Lm,nf0 − f0‖+
ω (f ; δ)

δ2 ‖Lm,nϕ‖
+ ω (f ; δ) + N ‖Lm,nf0 − f0‖ .

Now if we take δ := δm,n :=
√‖Lm,n(ϕ)‖, then we may write

‖Lm,nf − f‖ ≤ ω (f ; δ) ‖Lm,nf0 − f0‖+ 2ω (f ; δ) + N ‖Lm,nf0 − f0‖
and hence

(3.3) ‖Lm,nf − f‖ ≤ D {ω (f ; δ) ‖Lm,nf0 − f0‖+ ω (f ; δ) + ‖Lm,nf0 − f0‖} ,

where D = max {2, N}. For a given r > 0, define the following sets:

U := {(m, n) : ‖Lm,n (f)− f ‖ ≥ r} ,

U1 :=
{

(m, n) : ω (f ; δ) ‖Lm,nf0 − f0‖ ≥ r

3D

}
,

U2 :=
{

(m, n) : ω (f ; δ) ≥ r

3D

}
,

U3 :=
{

(m, n) : ‖Lm,nf0 − f0‖ ≥ r

3D

}
.

It follows from (3.3) that
U ⊂ U1 ∪ U2 ∪ U3.

Also define the sets:

U4 :=
{

(m, n) : ω (f ; δ) ≥
√

r

3D

}
,
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U5 :=
{

(m, n) : ‖Lm,nf0 − f0‖ ≥
√

r

3D

}
.

Then, observe that U1 ⊂ U4 ∪ U5. So, we have U ⊂ U2 ∪ U3 ∪ U4 ∪ U5. Now,
since γm,n := max

{
αm,n, βm,n

}
for each (m,n) ∈ N2, we get for all (j, k) ∈ N2,

1
γj,k

∑

(m,n)∈U

aj,k,m,n ≤ 1
βj,k

∑

(m,n)∈U2

aj,k,m,n +
1

αj,k

∑

(m,n)∈U3

aj,k,m,n

+
1

βj,k

∑

(m,n)∈U4

aj,k,m,n +
1

αj,k

∑

(m,n)∈U5

aj,k,m,n.

Letting j, k →∞ (in any manner) and using (i) and (ii), we obtain

P − lim
j,k

1
γj,k

∑

(m,n)∈U

aj,k,m,n = 0.

The proof is complete. ¤

The following analog also holds.

Theorem 3. Let {Lm,n} be a sequence of positive linear operators from Hω (K)
into C (K) , and let A = (aj,k,m,n) be a nonnegative RH-regular summability
matrix method. Assume that the following conditions hold:

(i) ‖Lm,n (f0)− f0‖ = st
(2)
A − om(αm,n) as m,n →∞,

(ii) ω (f ; δm,n) = st
(2)
A −om(βm,n) as m,n →∞, where δm,n :=

√‖Lm,n(ϕ)‖
with ϕ(u, v) =

(
u

1−u − x
1−x

)2

+
(

v
1−v − y

1−y

)2

. Then, for any f ∈ Hω (K),

‖Lm,n (f)− f ‖ = st
(2)
A − om(γm,n) as m,n →∞,

where γm,n := max
{
αm,n, βm,n

}
for each (m,n) ∈ N2. Similar results hold

when little “om” is replaced by big “Om”.
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