• 제목/요약/키워드: Positioning Stage

검색결과 262건 처리시간 0.023초

측위 정확도 향상을 위한 복합 IPS 시스템 설계 (Design of complex IPS system to improve positioning accuracy)

  • 이현섭;김진덕
    • 한국정보통신학회논문지
    • /
    • 제21권10호
    • /
    • pp.1917-1922
    • /
    • 2017
  • WPS는 현실세계에 산재한 무선 신호를 활용하여 측위를 수행한다. 측위 위치의 무선 신호 정보를 수집하여 radio map을 구성하는 구축단계, 구성된 정보와 수집된 무선 신호를 비교하는 측위 단계로 나누어진다. WPS는 측위 시 수집된 신호에 변화가 나타날 경우 측위 정확도의 하락을 가지고 온다. PDR은 관성 센서들을 활용하여 보행자의 걸음걸이 수, 이동거리, 방향을 분석하여 최종 이동지를 분석하는 시스템이다. WPS의 측위 결과가 두 개 이상의 위치로 나타날 경우 측위 정확도의 문제로 판단할 수 있다. 몇몇의 조건에서 문제가 발생하게 된다. 본 논문에서는 앞서 언급한 문제점이 발생하는 상황에 대하여 분석하고 이를 PDR을 통해서 보정하는 시스템에 대하여 제안한다. 이 복합측위를 적용할 경우 WPS에 문제가 발생할 경우에도 측위 정확도를 유지하거나 향상 시킬 수 있을 것으로 사료된다.

초정밀 평면 X-Y 스테이지의 최적제어기 설계 (Optimal Design of Controller for Ultra-Precision Plane X-Y Stage)

  • 곽이구;김재열;양동조;고명수;유신;김기태
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.342-347
    • /
    • 2002
  • After the industrial revolution in 20 century, the world are preparing for new revolution that is society with knowledge for a basis such as IT(Information Technology), NT(Nano Technology) and BT(Bio Technology). Recently, NT is applied to various fields that are composed of science, industry, media and semiconductor-micro technology. It has need of IT that is ultra-precision positioning technology with strokes of many hundreds mm and maintenance of nm precision in fields of ultra micro process, ultra precision measurement, photo communication part and photo magnetic memory. Performance test of servo control system that is used ultra-precision positioning system with single plane X-Y stage is performed by simulation with Matlab. Analyzed for previous control algorithm and adapted for modern control theory, dual servo algorithm is developed by minimum order observer, and stability and priority on controller are secured. Through the simulation and experiments on ultra precision positioning, stability and priority on ultra-precision positioning system with single plane X-Y stage and control algorithm are secured by using Matlab with Simulink and ControlDesk made in dSPACE

  • PDF

칼만필터의 잔류오차에 최소적응알고리즘을 적용한 이동로봇의 위치추정오차 검출기법 (Abrupt Error Detection of Mobile Robot Using LMS Algorithm to Residuals of Kalman Filter)

  • 이연석
    • 한국정보통신학회논문지
    • /
    • 제10권7호
    • /
    • pp.1332-1337
    • /
    • 2006
  • 이동로봇의 위치추정오차를 검출하는 방법으로 칼만필터의 잔류오차를 최소적응알고리즘으로 검사하여 시스템의 이상유무를 확인할 수 있음을 알아보았다. 이동로봇의 이상유무판별에 칼만필터를 적용하기 위한 모델로는 위치이동에 기여하는모터부분의 모델만을 사용하였고, 칼만필터의 잔류오차에 나타나는 바이어스성분의 검출로 이상유무를 판별할 수 있음을 확인하였다. 이동로봇의 동특성모델을 이용하여 이동로봇의 위치추정에 나타나는 오차를 판별할 수 있는 제안된 방법은 다른 부가적인 외부장치가 없이 사용될 수 있는 장점이 있다 . 칼만필터는 모터의 구동전류를 추정하고, 이 잔류오차에 적응자기동조필터를 적용하여 백색잡음의 성질을 지닌 잔류오차를 판별하게 된다. 이동로봇의 모델에 가능한 상황을 가정하여 구성한 시뮬레이션의 결과들은 제안된 방법이 위치추정 오차의 판별에 사용될 수 있음을 보여주고 있다.

실험계획법을 이용한 마이크로 스테이지 설계에 관한 연구 (A Study on Design of Micro Stage using Design of Experiment)

  • 예상돈;정재훈;이재광;민병현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1394-1397
    • /
    • 2005
  • The object of this study was to design of micro stage, which is one of the equipments embodied in ultra precision positioning mechanism. Design factors for micro stage were decided a roundness of hinge, a thickness of hinge, a thickness of stage, a length of arms and a clearance of division. To obtain the $1^{st}$ natural frequency and equivalent stresses, FEM simulation was performed using the table of orthogonal arrays and Taguchi method was used to determine the optimal design parameters. As results of this study, the size of 1st natural frequency and equivalent stresses on micro stage was influenced significantly by a thickness of hinge and a length of arm.

  • PDF

Development of a Miniature Air-bearing Stage with a Moving-magnet Linear Motor

  • Ro, Seung-Kook;Park, Jong-Kweon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권1호
    • /
    • pp.19-24
    • /
    • 2008
  • We propose a new miniature air-bearing stage with a moving-magnet slotless linear motor. This stage was developed to achieve the precise positioning required for submicron-level machining and miniaturization by introducing air bearings and a linear motor sufficient for mesoscale precision machine tools. The linear motor contained two permanent magnets and was designed to generate a preload force for the vertical air bearings and a thrust force for the stage movement. The characteristics of the air bearings, which used porous pads, were analyzed with numerical methods, and a magnetic circuit model was derived for the linear motor to calculate the required preload and thrust forces. A prototype of a single-axis miniature stage with dimensions of $120\;(W)\;{\times}\;120\;(L)\;{\times}\;50\;(H)\;mm$ was designed and fabricated, and its performance was examined, including its vertical stiffness, load capacity, thrust force, and positioning resolution.

3D 프린터 기반 수직형 마이크로 모션 스테이지의 최적설계 (Optimal Design of 3D Printer based Piezo-driven Vertical Micro-positioning Stage)

  • 김정현
    • 로봇학회논문지
    • /
    • 제12권1호
    • /
    • pp.78-85
    • /
    • 2017
  • This paper presents the development of a 3D printer based piezo-driven vertical micro-positioning stage. The stage consists of two flexure bridge structures which amplify and transfer the horizontal motion of the piezo-element into vertical motion of the end-effector. The stage is fabricated with ABS material using a precision 3D printer. This enables a one-body design eliminating the need for assembly, and significantly increases the freedom in design while shortening fabrication time. The design of the stage was optimized using response surface analysis method. Experimental results are presented which demonstrate 100nm stepping in the vertical out-of-plane direction. The results demonstrate the future possibilities of applying 3D printers and ABS material in fabricating linear driven motion stages.

이중서보제어루프와 디지털 필터를 통한 서보모터-업전구동기의 초정밀위치결정 시스템 개발 (Ultra Precision Positining System for Servo Motor-piezo Actuator Using the Dual Servo Loop and Digital Filter Implementation)

  • 이동성;박종호;박희재
    • 한국정밀공학회지
    • /
    • 제16권3호통권96호
    • /
    • pp.154-163
    • /
    • 1999
  • In this paper, an ultra precision positioning system has been developed using dual servo loop control. For positioning system having long distance with ultra precision , the combination of global stage and micro stage was required. A servo motor based ball screw is used as a global stage and the piezo actuator as a micro stage. For the improvement of positional precision, the digital Chebyshev filter is implemented in the developed to dual servo system. Therefore, the positional repeatability has been achieved within ${\pm}$ 10 mm, and this technique can be applied to develop precision semiconductor equipments such as lithography steppers and probers.

  • PDF

Self Displacement Sensing (SDS) Nano Stage

  • Choi, Soo-Chang;Park, Jeong-Woo;Kim, Yong-Woo;Lee, Deug-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권2호
    • /
    • pp.70-74
    • /
    • 2007
  • This paper describes the development of a nano-positioning system for nanoscale science and engineering. Conventional positioning systems, which can be expensive and complicated, require the use of laser interferometers or capacitive transducers to measure nanoscale displacements of the stage. In this study, a new self-displacement sensing (SDS) nano-stage was developed using mechanical magnification of its displacement signal. The SDS nano-stage measured the displacement of its movement using a position-sensitive photodiode (PSPD), a laser source, and a hinge-connected rotating mirror plate. A beam from a laser diode was focused onto the middle of the plate with the rotating mirror. The position variation of the reflected beam from the mirror rotation was then monitored by the PSPD. Finally, the PSPD measured the amplified displacement as opposed to the actual movement of the stage via an optical lever mechanism, providing the ability to more precisely control the nanoscale stage. The displacement amplification process was modeled by structural analysis. The simulation results of the amplification ratio showed that the distance variation between the PSPD and the mirror plate as well as the length L of the mirror plate could be used as the basic design parameters for a SDS nano-stage. The PSPD was originally designed for a total travel range of 30 to 60 mm, and the SDS nano-stage amplified that range by a factor of 15 to 25. Based on these results, a SDS nano-stage was fabricated using principle of displacement amplification.

전자빔 가공기용 진공 5축 스테이지의 제어 및 운동특성 (The Control and Motion Characteristics of 5 axis Vacuum Stage for Electron Beam Lithography)

  • 이찬홍;박천홍;이후상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.890-893
    • /
    • 2004
  • The ultra precision machining in industrial field are increased day by day. The diamond turning has been used generally, but now is faced with limitation of use, because of higher requirement of production field. The electron beam lithography is alternative in machining area as semiconductor production. For EB lithography, 5 axis vacuum stage is required to duplicate small and large patterns on wafer. The stage is composed of 2 rotational axis and 3 translational axis with 5 DC servo motors. The positioning repeatability and resolution of Z axis feed unit are 3.21$\mu$m and 0.5 $\mu$m/step enough to apply to lithography.

  • PDF

듀얼 스테이지 서보 시스템을 이용한 영상 추적장치의 정밀제어 (Dual Stage Servo Controller for Image Tracking System)

  • 최영준;강민식
    • 한국정밀공학회지
    • /
    • 제24권2호
    • /
    • pp.86-94
    • /
    • 2007
  • In this paper, a dual stage servo mechanism has been developed for image tracking system to improve control performances such as small rise time, small overshoot, small settling time, small stabilization error etc. A secondary stage, a platform, actuated by a pair of electro-magnets is mounted on a conventional elevation gimbal. In this mechanism, the gimbal provides large range but slow motion and the platform provides small range but fast positioning. A sliding mode control is applied to the platform positioning to attain robust performances and stability in the presence of the disturbance related to dynamic coupling of the gimbal and the platform. Results from experiments illustrate that the suggested dual stage mechanism controlled by the sliding mode control is effective in improving responses and attenuating the disturbance response related with dynamic coupling.