• Title/Summary/Keyword: Polymer derived ceramic

검색결과 29건 처리시간 0.026초

원호형 1-3 압전 복합재 변환기의 공진 특성 (Resonance Characteristics of a 1-3 Piezoelectric Composite Transducer of Circular Arch Shape)

  • 김대승;김진오
    • 한국소음진동공학회논문집
    • /
    • 제19권3호
    • /
    • pp.301-312
    • /
    • 2009
  • This paper presents a theoretical approach to calculate the resonant frequency of a thickness vibration mode in the radial direction for a 1-3 piezoelectric composite transducer of circular arch shape. For the composite transducer composed of a piezoelectric ceramic and a polymer, vibration parameters were derived according to the volume ratio of a ceramic, and a vibration characteristic equation was derived from the piezoelectric governing equations with adequate boundary conditions. The fundamental resonant frequencies were calculated numerically and verified by comparing them with those obtained from the finite element analysis and the experiment. The volume ratio and the thickness are more substantial than the curvature radius to determine the fundamental resonant characteristics, and the fundamental resonant frequency becomes higher for the larger volume ratio of the piezoelectric ceramic and for the smaller thickness.

Flexural Strength of Polysiloxane-Derived Strontium-Doped SiOC Ceramics

  • Eom, Jung-Hye;Kim, Young-Wook
    • 한국세라믹학회지
    • /
    • 제52권1호
    • /
    • pp.61-65
    • /
    • 2015
  • The effect of Sr addition on the flexural strength of bulk SiOC ceramics was investigated in polymer-derived SiOC ceramics prepared by conventional hot pressing. Crack-free, dense SiOC discs with a 30 mm diameter were successfully fabricated from commercially available polysiloxane with 1 mol% strontium isopropoxide derived Sr as an additive. Agglomerates formed after the pyrolysis of polysiloxane led to the formation of domain-like structures. The flexural strength of bulk SiOC was strongly dependent on the domain size formed and Sr addition. Both the minimization of the agglomerate size in the starting powders by milling after pyrolysis and the addition of Sr, which reinforces the SiOC structure, are efficient ways to improve the flexural strength of bulk SiOC ceramics. The typical flexural strength of bulk Sr-doped SiOC ceramics fabricated from submicron-sized SiOC powders was ~209 MPa.

수송기계 엔진 MEMS 용 SiCN 마이크로 구조물 제작

  • 정준호;정귀상
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2006년도 추계학술대회 발표 논문집
    • /
    • pp.14-17
    • /
    • 2006
  • This paper describes a novel processing technique for fabrication of polymer-derived SiCN (silicone carbonitride) microstructures for super-temperature MEMS applications. PDMS (polydimethylsiloxane) mold is fabricated on SU-8 photoresist using standard UV photolithographic process. Liquid precursor is injected into the PDMS mold. Finally, solid polymer structure is cross-linked using HIP (hot isostatic pressure) at $400^{\circ}C$, 205 bar Optimum pyrolysis and anneal ins conditions are determined to form a ceramic microstructure capable of withstanding over $1400^{\circ}C$. The fabricated SiCN ceramic microstructure has excel lent characteristics, such as shear strength (15.2 N), insulation resistance ($2.163{\times}10^{14}\;{\Omega}$) and BDV (min. 1.2 kV) under optimum process condition.

  • PDF

초고온 시스템용 SiCN 마이크로 구조물 제작 (Fabrication SiCN micro structures for extreme high temperature systems)

  • 판 투이 탁;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.216-216
    • /
    • 2009
  • This paper describes a novel processing technique for the fabrication of polymer-derived SiCN (silicone carbonitride) microstructures for extreme microelectromechanical system (MEMS) applications. A polydimethylsiloxane (PDMS) mold was formed on an SU-8 pattern using a standard UV photolithographic process. Next, the liquid precursor, polysilazane, was injected into the PDMS mold to fabricate free-standing SiCN microstructures. Finally, the solid polymer SiCN microstructure was cross-linked using hot isostatic pressure at $400^{\circ}C$ and 205 bar. The optimal pyrolysis and annealing conditions to form a ceramic microstructure capable of withstanding temperatures over $1400^{\circ}C$ were determined. Using the optimal process conditions, the fabricated SiCN ceramic microstructure possessed excellent characteristics includingshear strength (15.2 N), insulation resistance ($2.163{\times}10^{14}\;{\Omega}$, and BDV (1.2 kV, minimum). Since the fabricated ceramic SiCN microstructure has improved electrical and physical characteristics compared to bulk Si wafers, it may be applied to harsh environments and high-power MEMS applications such as heat exchangers and combustion chambers.

  • PDF

규소 고분자 복합체를 이용한 반응소결 질화규소 (Reaction Bonded Si3N4 from Si-Polysilazane Mixture)

  • 홍성진;안효창;김득중
    • 한국세라믹학회지
    • /
    • 제47권6호
    • /
    • pp.572-577
    • /
    • 2010
  • Reaction-bonded $Si_3N_4$ has cost-reduction merit because inexpensive silicon powder was used as a start material. But its density was not so high enough to be used for structural materials. So the sintered reaction-bonded $Si_3N_4$techniques were developed to solve the low density problem. In this study the sintered reaction-bonded $Si_3N_4$ manufacturing method by using polymer precursor which recently attained significant interest owing to the good shaping and processing ability was proposed. The formations, properties of reaction-bonded $Si_3N_4$ from silicon and polysilazane mixture were investigated. High density reaction-bonded $Si_3N_4$ was manufactured from silicon and silicon-containing preceramic polymers and post-sintering technique. The mixtures of silicon powder and polysilazane were prepared and reaction sintered in $N_2$ atmosphere at $1350^{\circ}C$ and post-sintered at 1600~$1950^{\circ}C$. Density and phase were analyzed and correlated to the resulting material properties.

PDMS 몰드를 이용한 초고온 MEMS용 SiCN 미세구조물 제작과 그 특성 (Fabrication of SiCN microstructures for super-high temperature MEMS using PDMS mold and its characteristics)

  • 정귀상;우형순
    • 센서학회지
    • /
    • 제15권1호
    • /
    • pp.53-57
    • /
    • 2006
  • This paper describes a novel processing technique for fabrication of polymer-derived SiCN (silicone carbonitride) microstructures for super-temperature MEMS applications. PDMS (polydimethylsiloxane) mold is fabricated on SU-8 photoresist using standard UV photolithographic process. Liquid precursor is injected into the PDMS mold. Finally, solid polymer structure is cross-linked using HIP (hot isostatic pressure) at $400^{\circ}C$, 205 bar. Optimum pyrolysis and annealing conditions are determined to form a ceramic microstructure capable of withstanding over $1400^{\circ}C$. The fabricated SiCN ceramic microstructure has excellent characteristics, such as shear strength (15.2 N), insulation resistance ($2.163{\times}10^{14}{\Omega}$) and BDV (min. 1.2 kV) under optimum process condition. These fabricated SiCN ceramic microstructures have greater electric and physical characteristics than bulk Si wafer. The fabricated SiCN microstructures would be applied for supertemperature MEMS applications such as heat exchanger and combustion chamber.

Preceramic Polymer를 이용한 마이크로셀룰라 코디어라이트 세라믹스의 합성 (Synthesis of Microcellular Cordierite Ceramics Derived from a Preceramic Polymer)

  • 송인혁;김영미;김해두;김영욱
    • 한국세라믹학회지
    • /
    • 제44권5호
    • /
    • pp.184-189
    • /
    • 2007
  • In this study, a novel-processing route for producing microcellular cordierite ceramics has been developed. The proposed strategy for making the microcellular cordierite ceramics involves three steps: (i) fabricating ceramic-filled preceramic foams by heating a mixture of polysiloxane, expandable microspheres, talc, and alumina in a mold, (ii) cross-linking the foamed body, and (iii) transforming the body into microcellular cordierite ceramics by sintering. Cu jig was used for near net shaping in the foaming step. The experimental variables such as the shape of foaming jig and the content of expendable microsphere were investigated. By controlling the content of expendable microsphere, it was possible to make the porous cordierite ceramics with cell density of ${\sim}1.0{\times}10^9\;cells/cm^3$.

습식법으로 제조된 BN 중간층을 가진 Cf/SiC 복합재의 제조 및 물성 평가 (Fabrication and Characterization of Cf/SiC Composite with BN Interphase Coated by Wet Chemical Process)

  • 구준모;김경호;한윤수
    • 한국표면공학회지
    • /
    • 제50권6호
    • /
    • pp.523-530
    • /
    • 2017
  • In this study, we developed the h-BN interphase for ceramic matrix composites (CMCs) through a wet chemical coating method, which has excellent price competitiveness and is a simple process as a departure from the existing high cost chemical vapor deposition method. The optimum condition for nitriding an h-BN interphase using boric acid and urea as precursors were derived, and the h-BN interphase coating through a wet method on a carbon preform of 2.5 D was conducted to apply the optimum conditions to the CMCs. In order to control the coating property via the wet coating method, four parameters were investigated such as dipping time of the specimen in the precursor solution, the ratio of boric acid and urea in the precursor, the concentration of solution where the precursor was dissolved, and the cycle of dipping and dry process. The CMCs was fabricated through polymer impregnation and pyrolysis (PIP) processes and a three-point flexural strength test was conducted to verify the role of the coated h-BN interphase.

초고온 MEMS용 SiCN 미세구조물 제조 (Fabrication of SiCN Microstructures for Super-Temperature MEMS applications)

  • 우형순;김규현;노상수;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 춘계학술대회 논문집 반도체 재료 센서 박막재료 전자세라믹스
    • /
    • pp.125-128
    • /
    • 2004
  • In this paper, a novel processing technique for fabrication of high-temperature MEMS based on polymer-derived SiCN microstructures is described. PDMS molds are fabricated on SU-8 photoresist using standard UV-photolithographic processes. Liquid precursors are injected into the PDMS mold. And then, the resulting solid polymer structures are crosslinked under isostatic pressure, and pyrolyzed to form a ceramic capable of withstanding over $1500^{\circ}C$. These fabricated SiCN structures would be applied for high-temperature applications, such as heat exchanger and combustion chamber.

  • PDF

PDMS 몰드를 이용한 초고온용 SiCN 구조물의 제작 (Fabrication of SiCN structures using PDMS mold for high-temperature applications)

  • 우형순;김규현;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.376-379
    • /
    • 2003
  • In this paper, a novel processing technique for fabrication of high-temperature MEMS based on polymer-derived SiCN microstructures is described. PDMS molds are fabricated on SU-8 photoresist using standard UV-photolithographic processes. Liquid precursors are injected into the PDMS mold. And then, the resulting solid polymer structures are crosslinked under isostatic pressure, and pyrolyzed to form a ceramic capable of withstanding over $1500^{\circ}C$. These fabricated SiCN structures would be applied for high-temperature applications, such as heat exchanger and combustion chamber.

  • PDF