Browse > Article
http://dx.doi.org/10.5369/JSST.2006.15.1.053

Fabrication of SiCN microstructures for super-high temperature MEMS using PDMS mold and its characteristics  

Chung, Gwiy-Sang (School of Electrical Eng., University of Ulsan)
Woo, Hyung-Soon (School of Electrical Eng., University of Ulsan)
Publication Information
Abstract
This paper describes a novel processing technique for fabrication of polymer-derived SiCN (silicone carbonitride) microstructures for super-temperature MEMS applications. PDMS (polydimethylsiloxane) mold is fabricated on SU-8 photoresist using standard UV photolithographic process. Liquid precursor is injected into the PDMS mold. Finally, solid polymer structure is cross-linked using HIP (hot isostatic pressure) at $400^{\circ}C$, 205 bar. Optimum pyrolysis and annealing conditions are determined to form a ceramic microstructure capable of withstanding over $1400^{\circ}C$. The fabricated SiCN ceramic microstructure has excellent characteristics, such as shear strength (15.2 N), insulation resistance ($2.163{\times}10^{14}{\Omega}$) and BDV (min. 1.2 kV) under optimum process condition. These fabricated SiCN ceramic microstructures have greater electric and physical characteristics than bulk Si wafer. The fabricated SiCN microstructures would be applied for supertemperature MEMS applications such as heat exchanger and combustion chamber.
Keywords
SiCN; MEMS; PDMS mold; precursor; microstructure; HIP;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G S. Chung, 'Thin SOI structures for sensing and integrated circuit applications', Sensors and Actuators A, vol. 39, pp. 241-251, 1993   DOI   ScienceOn
2 G. S. Chung and R. Maboudian, 'Bonding characteristics of 3C-SiC wafers with hydrofluoric acid for high-temperature MEMS applications', Sensors and Actuators A, vol. 119, pp. 599-604, 2005   DOI   ScienceOn
3 L. A. Liew, R. A. Saravanan, M. right, M. L. Dunn, J. W. Daily, and R. Raj, 'Processing and characterization of silicon carbon-nitride ceramics: application of electrical properties towards MEMS thermal actuators', Sensors and Actuators A, vol. 103, pp. 171-181, 2003
4 E. Kroke, Y. L. Li, C. Konetschny, E. Lecomte, C. Fasel, and R. Riedel, 'Sliazane derived ceramics and related materials', Mater. Sic. and Eng., vol. 26, pp. 97-199, 2000   DOI   ScienceOn
5 M. Mehregany, C. A. Zonnan, N. Rajan, and C. H. Wu, 'Silicon carbide MEMS for harsh environments', Proceeding IEEE, vol. 86, no. 8, pp. 1594-1609, 1998   DOI   ScienceOn
6 R. Riedel, L. M. Ruwisch, L. An, and R. Raj, 'Amorphous siliconboron carbonitride ceramics with anomalously high resistance to creep', Journal American Ceramic Society, vol. 81, pp. 3341-3344, 1998   DOI   ScienceOn
7 L. A. Liew, W. Zhang, V. M. Bright, L. An, M. L. Dunn, and R. Raj, 'Fabrication of SiCN ceramic MEMS using inectable polymer-precursor technique,' Sensors and Actuators A, vol. 89, pp. 64-70, 2001   DOI   ScienceOn
8 L. A. Liew, Y. Liu, R. Luo, T. Cross, L. An, V. M. Bright, M. L. Dunn, J. W. Daily, and R. Raj, 'Fabrication of SiCN MEMS by photopolymerization of pre-ceramic polymer', Sensors and Actuators A, vol. 95, pp. 120-134, 2002   DOI   ScienceOn
9 R. Raj, L. An, S. Shah, and R. Riedel, 'Oxidation kinetics of amorphous silicon carbonitride ceramics', Journal American Ceramic Society, vol. 84, pp. 1803-1810, 2001   DOI   ScienceOn