DOI QR코드

DOI QR Code

Flexural Strength of Polysiloxane-Derived Strontium-Doped SiOC Ceramics

  • Eom, Jung-Hye (Functional Ceramics Laboratory, Department of Materials Science and Engineering, The University of Seoul) ;
  • Kim, Young-Wook (Functional Ceramics Laboratory, Department of Materials Science and Engineering, The University of Seoul)
  • Received : 2014.12.30
  • Accepted : 2015.01.23
  • Published : 2015.01.31

Abstract

The effect of Sr addition on the flexural strength of bulk SiOC ceramics was investigated in polymer-derived SiOC ceramics prepared by conventional hot pressing. Crack-free, dense SiOC discs with a 30 mm diameter were successfully fabricated from commercially available polysiloxane with 1 mol% strontium isopropoxide derived Sr as an additive. Agglomerates formed after the pyrolysis of polysiloxane led to the formation of domain-like structures. The flexural strength of bulk SiOC was strongly dependent on the domain size formed and Sr addition. Both the minimization of the agglomerate size in the starting powders by milling after pyrolysis and the addition of Sr, which reinforces the SiOC structure, are efficient ways to improve the flexural strength of bulk SiOC ceramics. The typical flexural strength of bulk Sr-doped SiOC ceramics fabricated from submicron-sized SiOC powders was ~209 MPa.

Keywords

References

  1. J. W. Baek and D. J. Kim, "Ceramic Foams by the Self- Blowing of Polymer," J. Korean Ceram. Soc., 41 [7] 555-59 (2004). https://doi.org/10.4191/KCERS.2004.41.7.555
  2. I. M. Kwon, I. H. Song, Y. J. Park, J. W. Lee, H. S. Yun, and H. D. Kim, "The Synthesis and Pore Property of Hydrogen Membranes Derived from Polysilazane as Inorganic Polymer," J. Korean Ceram. Soc., 46 [5] 462-66 (2009). https://doi.org/10.4191/KCERS.2009.46.5.462
  3. B. V. M. Kumar and Y.-W. Kim, "Processing and Polysiloxane- Derived Porous Ceramics: A Review," Sci. Tech. Adv. Mater., 11 044303 (2010). https://doi.org/10.1088/1468-6996/11/4/044303
  4. D. H. Kwak, J. H. Kim, E. J. Lee, and D. J. Kim, "Formation of Bioactive Ceramic Foams by Polymer Pyrolysis and Self-Blowing," J. Korean Ceram. Soc., 48 [5] 412-17 (2011). https://doi.org/10.4191/kcers.2011.48.5.412
  5. Y.-W. Kim, J. H. Eom, Y. Guo, W. Zhai, C. B. Park, and I. H. Song, "Processing of Open-Cell Silicon Carbide Foams by Steam Chest Molding and Carbothermal Reduction," J. Am. Ceram. Soc., 94 [2] 344-47 (2011). https://doi.org/10.1111/j.1551-2916.2010.04311.x
  6. J. Park, Y. Kim, and M. Jung, "Preparation of Porous SiC Ceramics Using Polycarbosilane Derivatives as Binding Agents," J. Korean Ceram. Soc., 49 [5] 412-16 (2012). https://doi.org/10.4191/kcers.2012.49.5.412
  7. T. Ohji and M. Fukushima, "Macro-Porous Ceramics: Processing and Properties," Int. Mater. Rev., 57 [2] 115-31 (2012). https://doi.org/10.1179/1743280411Y.0000000006
  8. J. H. Eom, Y.-W. Kim, and S. Raju, "Processing and Properties of Macroporous Silicon Carbide Ceramics: A Review," J. Asian Ceram. Soc., 1 [3] 220-42 (2013). https://doi.org/10.1016/j.jascer.2013.07.003
  9. K. H. Lim, K. Y. Cho, D. H. Riu, D. G. Shin, E. J. Jin, H. E. Kim, H. W. Cheong, and H. L. Lee, "Properties of the Electrolyte Separators for Thermal Batteries Using SiOC Mat," J. Korean Ceram. Soc., 46 [6] 648-52 (2009). https://doi.org/10.4191/KCERS.2009.46.6.648
  10. J. J. Kim, J. H. Lee, Y. J. Lee, W. T. Kwon, S. R. Kim, D. J. Choi, H. Kim, and Y. Kim, "Preparation and Characterization of Low k Thin Film Using a Preceramic Polymer," J. Korean Ceram. Soc., 48 [6] 499-503 (2011). https://doi.org/10.4191/kcers.2011.48.6.499
  11. Y. J. Lee, J. Y. Lyu, K. C. Roh, S. R. Kim, W. T. Kwon, D. G. Shin, and Y. Kim, "SiOC Anode Material Derived from Poly(phenyl carbosilane) for Lithium Ion Batteries," J. Korean Ceram. Soc., 50 [6] 480-84 (2013). https://doi.org/10.4191/kcers.2013.50.6.480
  12. K. J. Kim, S. Lee, J. H. Lee, M. H. Roh, K. W. Lim, and Y. W. Kim, "Structural and Optical Characteristics of Crystalline Silicon Carbide Nanoparticles Synthesized by Carboth-ermal Reduction," J. Am. Ceram. Soc., 92 [2] 424-28 (2009). https://doi.org/10.1111/j.1551-2916.2008.02913.x
  13. M. Narisawa, R. I. Sumimoto, K. I. Kita, H. Kado, H. Mabuchi, and Y. W. Kim, "Melt Spinning and Metal Chloride Vapor Curing Process on Polymethylsilsesquioxane as Si-O-C Fiber Precursor," J. Appl. Polym. Sci., 114 2600-607 (2009). https://doi.org/10.1002/app.30802
  14. A. Guo, M. Roso, M. Modesti, J. Liu, and P. Colombo, "Hierarchically Structured Polymer-Derived Ceramic Fibers by Electrospinning and Catalyst-Assisted Pyrolysis," J. Eur. Ceram. Soc., 34 549-54 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.08.025
  15. G. D. Soraru, E. Dallapiccola, and G. D'Andrea, "Mechanical Characterization of Sol-Gel-derived Silicon Oxycarbide Glasses," J. Am. Ceram. Soc., 79 2074-80 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08939.x
  16. G. D. Soraru, S. Modena, E. Guadagnino, P. Colombo, J. Egan, and C. Pantano, "Chemical Durability of Silicon Oxycarbide Glasses," J. Am. Ceram. Soc., 85 1529-536 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00308.x
  17. P. Greil, "Active-Filler-Controlled Pyrolysis of Preceramic Polymers," J. Am. Ceram. Soc., 78 835-848 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08404.x
  18. G. M. Renlund and S. Prochazka, "Silicon Oxycarbide Glasses: Part II. Structure and Properties," J. Mater. Res., 6 2723-734 (1991). https://doi.org/10.1557/JMR.1991.2723
  19. M. Esfehanian, R. Oberacker, T. Fett, and M. J. Hoffmann, "Development of Dense Filler-Free Polymer-Derived SiOC Ceramics by Field-Assisted Sintering," J. Am. Ceram. Soc., 91 3803-05 (2008). https://doi.org/10.1111/j.1551-2916.2008.02730.x
  20. J. H. Eom, Y. -W. Kim, and B. J. Jung, "Effect of Alkaline Earth Additives on the Flexural Strength of Silicon Oxycarbide- Bonded Silicon Carbide Ceramics," Ceram. Int., 39 2083-91 (2013). https://doi.org/10.1016/j.ceramint.2012.08.064
  21. V. S. Pradeep, M. Graczyk-Zajac, R. Riedel, and G. D. Soraru, "New Insights in to the Lithium Storage Mechanism in Polymer Derived SiOC Anode Materials," Electrochim. Acta, 119 78-85 (2014). https://doi.org/10.1016/j.electacta.2013.12.037
  22. A. Saha and R. Raj, "Crystallization Maps for SiCO Amorphous Ceramics," J. Am. Ceram. Soc., 90 578-83 (2007). https://doi.org/10.1111/j.1551-2916.2006.01423.x
  23. T. Rouxel, G. Massouras, and G. D. Soraru, "High Temperature Behavior of a Gel-Derived SiOC Glass: Elasticity and Viscosity," J. Sol-Gel Sci. Technol., 14 87-94 (1999). https://doi.org/10.1023/A:1008779915809
  24. Y. H. Choi, Y. -W. Kim, I. S. Han, and S. K. Woo, "Effect of Alkaline Earth Metal Oxide Addition on Flexural Strength of Porous Mullite-Bonded Silicon Carbide Ceramics," J. Mater. Sci., 45 6841-44 (2010). https://doi.org/10.1007/s10853-010-4939-9
  25. M. A. Mazo, A. Nistal, A. C. Caballero, F. Rubio, J. Rubio, and J. L. Oteo, "Influence of Processing Conditions in TEOS/PDMS Derived Silicon Oxycarbide Materials. Part 1: Microstructure and Properties," J. Eur. Ceram. Soc., 33 1195-205 (2013). https://doi.org/10.1016/j.jeurceramsoc.2012.11.022