Browse > Article
http://dx.doi.org/10.4191/kcers.2015.52.1.61

Flexural Strength of Polysiloxane-Derived Strontium-Doped SiOC Ceramics  

Eom, Jung-Hye (Functional Ceramics Laboratory, Department of Materials Science and Engineering, The University of Seoul)
Kim, Young-Wook (Functional Ceramics Laboratory, Department of Materials Science and Engineering, The University of Seoul)
Publication Information
Abstract
The effect of Sr addition on the flexural strength of bulk SiOC ceramics was investigated in polymer-derived SiOC ceramics prepared by conventional hot pressing. Crack-free, dense SiOC discs with a 30 mm diameter were successfully fabricated from commercially available polysiloxane with 1 mol% strontium isopropoxide derived Sr as an additive. Agglomerates formed after the pyrolysis of polysiloxane led to the formation of domain-like structures. The flexural strength of bulk SiOC was strongly dependent on the domain size formed and Sr addition. Both the minimization of the agglomerate size in the starting powders by milling after pyrolysis and the addition of Sr, which reinforces the SiOC structure, are efficient ways to improve the flexural strength of bulk SiOC ceramics. The typical flexural strength of bulk Sr-doped SiOC ceramics fabricated from submicron-sized SiOC powders was ~209 MPa.
Keywords
Silicon oxycarbide; Flexural strength; Polysiloxane;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 J. W. Baek and D. J. Kim, "Ceramic Foams by the Self- Blowing of Polymer," J. Korean Ceram. Soc., 41 [7] 555-59 (2004).   과학기술학회마을   DOI
2 I. M. Kwon, I. H. Song, Y. J. Park, J. W. Lee, H. S. Yun, and H. D. Kim, "The Synthesis and Pore Property of Hydrogen Membranes Derived from Polysilazane as Inorganic Polymer," J. Korean Ceram. Soc., 46 [5] 462-66 (2009).   과학기술학회마을   DOI
3 B. V. M. Kumar and Y.-W. Kim, "Processing and Polysiloxane- Derived Porous Ceramics: A Review," Sci. Tech. Adv. Mater., 11 044303 (2010).   DOI
4 D. H. Kwak, J. H. Kim, E. J. Lee, and D. J. Kim, "Formation of Bioactive Ceramic Foams by Polymer Pyrolysis and Self-Blowing," J. Korean Ceram. Soc., 48 [5] 412-17 (2011).   과학기술학회마을   DOI   ScienceOn
5 Y.-W. Kim, J. H. Eom, Y. Guo, W. Zhai, C. B. Park, and I. H. Song, "Processing of Open-Cell Silicon Carbide Foams by Steam Chest Molding and Carbothermal Reduction," J. Am. Ceram. Soc., 94 [2] 344-47 (2011).   DOI
6 J. Park, Y. Kim, and M. Jung, "Preparation of Porous SiC Ceramics Using Polycarbosilane Derivatives as Binding Agents," J. Korean Ceram. Soc., 49 [5] 412-16 (2012).   과학기술학회마을   DOI   ScienceOn
7 T. Ohji and M. Fukushima, "Macro-Porous Ceramics: Processing and Properties," Int. Mater. Rev., 57 [2] 115-31 (2012).   DOI
8 J. H. Eom, Y.-W. Kim, and S. Raju, "Processing and Properties of Macroporous Silicon Carbide Ceramics: A Review," J. Asian Ceram. Soc., 1 [3] 220-42 (2013).   DOI
9 K. H. Lim, K. Y. Cho, D. H. Riu, D. G. Shin, E. J. Jin, H. E. Kim, H. W. Cheong, and H. L. Lee, "Properties of the Electrolyte Separators for Thermal Batteries Using SiOC Mat," J. Korean Ceram. Soc., 46 [6] 648-52 (2009).   과학기술학회마을   DOI
10 J. J. Kim, J. H. Lee, Y. J. Lee, W. T. Kwon, S. R. Kim, D. J. Choi, H. Kim, and Y. Kim, "Preparation and Characterization of Low k Thin Film Using a Preceramic Polymer," J. Korean Ceram. Soc., 48 [6] 499-503 (2011).   과학기술학회마을   DOI   ScienceOn
11 Y. J. Lee, J. Y. Lyu, K. C. Roh, S. R. Kim, W. T. Kwon, D. G. Shin, and Y. Kim, "SiOC Anode Material Derived from Poly(phenyl carbosilane) for Lithium Ion Batteries," J. Korean Ceram. Soc., 50 [6] 480-84 (2013).   과학기술학회마을   DOI
12 K. J. Kim, S. Lee, J. H. Lee, M. H. Roh, K. W. Lim, and Y. W. Kim, "Structural and Optical Characteristics of Crystalline Silicon Carbide Nanoparticles Synthesized by Carboth-ermal Reduction," J. Am. Ceram. Soc., 92 [2] 424-28 (2009).   DOI
13 M. Narisawa, R. I. Sumimoto, K. I. Kita, H. Kado, H. Mabuchi, and Y. W. Kim, "Melt Spinning and Metal Chloride Vapor Curing Process on Polymethylsilsesquioxane as Si-O-C Fiber Precursor," J. Appl. Polym. Sci., 114 2600-607 (2009).   DOI
14 G. D. Soraru, E. Dallapiccola, and G. D'Andrea, "Mechanical Characterization of Sol-Gel-derived Silicon Oxycarbide Glasses," J. Am. Ceram. Soc., 79 2074-80 (1996).   DOI
15 G. D. Soraru, S. Modena, E. Guadagnino, P. Colombo, J. Egan, and C. Pantano, "Chemical Durability of Silicon Oxycarbide Glasses," J. Am. Ceram. Soc., 85 1529-536 (2002).   DOI
16 J. H. Eom, Y. -W. Kim, and B. J. Jung, "Effect of Alkaline Earth Additives on the Flexural Strength of Silicon Oxycarbide- Bonded Silicon Carbide Ceramics," Ceram. Int., 39 2083-91 (2013).   DOI
17 P. Greil, "Active-Filler-Controlled Pyrolysis of Preceramic Polymers," J. Am. Ceram. Soc., 78 835-848 (1995).   DOI
18 G. M. Renlund and S. Prochazka, "Silicon Oxycarbide Glasses: Part II. Structure and Properties," J. Mater. Res., 6 2723-734 (1991).   DOI
19 M. Esfehanian, R. Oberacker, T. Fett, and M. J. Hoffmann, "Development of Dense Filler-Free Polymer-Derived SiOC Ceramics by Field-Assisted Sintering," J. Am. Ceram. Soc., 91 3803-05 (2008).   DOI
20 V. S. Pradeep, M. Graczyk-Zajac, R. Riedel, and G. D. Soraru, "New Insights in to the Lithium Storage Mechanism in Polymer Derived SiOC Anode Materials," Electrochim. Acta, 119 78-85 (2014).   DOI
21 A. Saha and R. Raj, "Crystallization Maps for SiCO Amorphous Ceramics," J. Am. Ceram. Soc., 90 578-83 (2007).   DOI
22 T. Rouxel, G. Massouras, and G. D. Soraru, "High Temperature Behavior of a Gel-Derived SiOC Glass: Elasticity and Viscosity," J. Sol-Gel Sci. Technol., 14 87-94 (1999).   DOI
23 Y. H. Choi, Y. -W. Kim, I. S. Han, and S. K. Woo, "Effect of Alkaline Earth Metal Oxide Addition on Flexural Strength of Porous Mullite-Bonded Silicon Carbide Ceramics," J. Mater. Sci., 45 6841-44 (2010).   DOI
24 M. A. Mazo, A. Nistal, A. C. Caballero, F. Rubio, J. Rubio, and J. L. Oteo, "Influence of Processing Conditions in TEOS/PDMS Derived Silicon Oxycarbide Materials. Part 1: Microstructure and Properties," J. Eur. Ceram. Soc., 33 1195-205 (2013).   DOI
25 A. Guo, M. Roso, M. Modesti, J. Liu, and P. Colombo, "Hierarchically Structured Polymer-Derived Ceramic Fibers by Electrospinning and Catalyst-Assisted Pyrolysis," J. Eur. Ceram. Soc., 34 549-54 (2014).   DOI