• Title/Summary/Keyword: Poly silicon

Search Result 510, Processing Time 0.029 seconds

Fabrication of poly-crystalline silicon ingot for solar cells by CCCC method (CCCC법에 의한 태양전지용 다결정 실리콘 잉고트의 제조)

  • Shin J. S.;Lee D. S.;Lee S. M.;Moon B. M.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.94-97
    • /
    • 2005
  • For the fabrication of poly-crystalline silicon ingot, CCCC (Cold Crucible Continuous Casting) method under a high frequency alternating magnetic field, was utilized in order to prevent crucible consumption and ingot contamination and to increase production rate. In order to effectively and continuously melt and cast silicon, which has a high radiation heat loss due to the high melting temperature and a low induction heating efficiency due to a low electric conductivity, Joule and pinch effects were optimized. Throughout the present investigation, poly-crystalline Si ingot was successfully produced at the casting speed of above 1.5 mm/min under a non-contact condition.

  • PDF

Modeling of Electrical Characteristics in Poly Silicon Thin Film Transistor with Process Parameter (다결정 실리콘 박막 트랜지스터에서 공정 파라미터에 따른 전기적 특성의 모델링)

  • Jung, Eun-Sik;Choi, Young-Sik;Lee, Yong-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.201-204
    • /
    • 2001
  • In this paper, for modeling of electrical characteristics in Poly Silicon Thin Film Transistors with process parameters set up optimum values, So, the I-V characteristics of poly silicon TFT parameters are examined and simulated in terms of the variations in process parameter. And these results compared and analyzed simulation values with examination value. The simulation program for characteristic analysis used SUPREM IV for processing, Matlab for modeling by mathematics, and SPICE for electric characteristic of devices. Input parameter for simulation characteristics is like condition of device process sequence, these electric characteristic of $I_D-V_D$ $I_D-V_G$, variations of grain size. The Gate oxide thickness of poly silicon are showed similar results between real device characteristics and simulation characteristics.

  • PDF

Modeling of Electrical Characteristics in Poly Silicon Thin Film Transistor with Process Parameter (다결정 실리콘 박막 트랜지스터에서 공정 파라미터에 따른 전기적 특성의 모델링)

  • 정은식;최영식;이용재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.201-204
    • /
    • 2001
  • In this paper, for modeling of electrical characteristics in Poly Silicon Thin Film Transistors with process parameters set up optimum values. So, the I-V characteristics of poly silicon TFT parameters are examined and simulated in terms of the variations in process parameter. And these results compared and analyzed simulation values with examination value. The simulation program for characteristic analysis used SUPREM IV for processing, Matlab for modeling by mathematics, and SPICE for electric characteristic of devices. Input parameter for simulation characteristics is like condition of device process sequence, these electric characteristic of I$_{D}$-V$_{D}$, I$_{D}$-V$_{G}$, variations of grain size. The Gate oxide thickness of poly silicon are showed similar results between real device characteristics and simulation characteristics.ristics.

  • PDF

Statistical Design of Experiments and Analysis: Hierarchical Variance Components and Wafer-Level Uniformity on Gate Poly-Silicon Critical Dimension (통계적 실험계획 및 분석: Gate Poly-Silicon의 Critical Dimension에 대한 계층적 분산 구성요소 및 웨이퍼 수준 균일성)

  • Park, Sung-min;Kim, Byeong-yun;Lee, Jeong-in
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.2
    • /
    • pp.179-189
    • /
    • 2003
  • Gate poly-silicon critical dimension is a prime characteristic of a metal-oxide-semiconductor field effect transistor. It is important to achieve the uniformity of gate poly-silicon critical dimension in order that a semiconductor device has acceptable electrical test characteristics as well as a semiconductor wafer fabrication process has a competitive net-die-per-wafer yield. However, on gate poly-silicon critical dimension, the complexity associated with a semiconductor wafer fabrication process entails hierarchical variance components according to run-to-run, wafer-to-wafer and even die-to-die production unit changes. Specifically, estimates of the hierarchical variance components are required not only for disclosing dominant sources of the variation but also for testing the wafer-level uniformity. In this paper, two experimental designs, a two-stage nested design and a randomized complete block design are considered in order to estimate the hierarchical variance components. Since gate poly-silicon critical dimensions are collected from fixed die positions within wafers, a factor representing die positions can be regarded as fixed in linear statistical models for the designs. In this context, the two-stage nested design also checks the wafer-level uniformity taking all sampled runs into account. In more detail, using variance estimates derived from randomized complete block designs, Duncan's multiple range test examines the wafer-level uniformity for each run. Consequently, a framework presented in this study could provide guidelines to practitioners on estimating the hierarchical variance components and testing the wafer-level uniformity in parallel for any characteristics concerned in semiconductor wafer fabrication processes. Statistical analysis is illustrated for an experimental dataset from a real pilot semiconductor wafer fabrication process.

Joule-heating Induced Crystallization (JIC) of Amorphous Silicon Films

  • Ko, Da-Yeong;Ro, Jae-Sang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.101-104
    • /
    • 2018
  • An electric field was applied to a Mo conductive layer in the sandwiched structure of $glass/SiO_2/Mo/SiO_2/a-Si$ to induce Joule heating in order to generate the intense heat needed to carry out the crystallization of amorphous silicon. Polycrystalline silicon was produced via Joule heating through a solid state transformation. Blanket crystallization was accomplished within the range of millisecond, thus demonstrating the possibility of a new crystallization route for amorphous silicon films. The grain size of JIC poly-Si can be varied from few tens of nanometers to the one having the larger grain size exceeding that of excimer laser crystallized (ELC) poly-Si according to transmission electron microscopy. We report here the blanket crystallization of amorphous silicon films using the $2^{nd}$ generation glass substrate.

Study of Post Excimer Laser Annealing effect on Silicide Mediated Polycrystalline Silicon. (실리사이드 매개 결정화된 다결정 실리콘 박막의 후속 엑시머 레이저 어닐링 효과에 대한 연구)

  • Choo, Byoung-Kwon;Park, Seoung-Jin;Kim, Kyung-Ho;Son, Yong-Duck;Oh, Jae-Hwan;Choi, Jong-Hyun;Jang, Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.173-176
    • /
    • 2004
  • In this study we investigated post ELA(Excimer Laser Annealing) effect on SMC (Silicide Mediated Crystalization) poly-Si (Polycrystalline Silicon) to improve the characteristics of poly-Si. Combining SMC and XeCl ELA were used to crystallize the a-Si (amorphous Silicon) at various ELA energy density for LTPS (Low Temperature Polycrystalline Silicon). We fabricated the conventional SMC poly-Si with no SPC (Solid Phase Crystallization) phase using UV heating method[1] and irradiated excimer laser on SMC poly-Si, so called SMC-ELA poly-Si. After using post ELA we can get better surface morphology than conventional ELA poly-Si and enhance characteristics of SMC poly-Si. We also observed the threshold energy density regime in SMC-ELA poly-Si like conventional ELA poly-Si.

  • PDF

Effective Characterization Methods of Polycrystalline Silicon Films Fabricated by Ni Induced Crystallization

  • Koo, Hyun-Woo;Maidanchuk, Ivan;Jung, Jae-Wan;Lee, Ki-Yong;Berkeley, Brian H.;Kim, Sang-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.250-253
    • /
    • 2009
  • Effective methods for monitoring the quality of polycrystalline silicon (poly-Si) films are discussed. Raman spectroscopy is typically used to determine crystallinity of poly-Si, but this method has limitations for data gathering on large substrates for mass production of poly-Si TFT backplanes. Spectroscopic ellipsometry is proposed as an alternative for fast and simple estimation of poly-Si quality on large substrates. By using both ellipsometry and Raman spectroscopy, it is possible to determine whether the quality and uniformity of the poly-Si films meet the criteria required for mass production of TFT backplanes for AMOLED panels.

  • PDF

Improvement in Electrical Stability of poly-Si TFT Employing Vertical a-Si Offsets

  • Park, J.W.;Park, K.C.;Han, M.K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.67-68
    • /
    • 2000
  • Polycrystalline silicon (poly-Si) thin film transistors (TFT's) employing vertical amorphous silicon (a-Si) offsets have been fabricated without additional photolithography processes. The a-Si offset has been formed utilizing the poly-Si grain growth blocking effect by thin native oxide film during the excimer laser recrystallization of a-Si. The ON current degradation of the new device after 4 hour's electrical stress was reduced by 5 times compared with conventional poly-Si TFT's.

  • PDF

Use of a Rapid Thermal Process Technique to study on the crystallization of amorphous Si films fabricated by PECVD (PECVD 방법으로 제조된 비정질 Si 박막의 RTP를 이용한 결정화 연구)

  • Sim, C.H.;Kim, H.N.;Kim, S.J.;Kim, J.W.;Kwon, J.Y.;Lee, H.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2052-2054
    • /
    • 2005
  • TFT-LCD requires to use poly silicon for High resolution and High integration. Thin film make of Poly silicon on the excimer laser-induced crystallization of PECVD(plasma-enhanced chemical vapor deposition)-grown amorphous silicon. In the thin film hydrogen affects to a device performance from bad elements like eruption, void and etc. So dehydrogenation prior to laser exposure was necessary. In this study, use RTP(Rapid Thermal Process) at various temperature from $670^{\circ}C$ to $750^{\circ}C$ and fabricate poly-silicon. it propose optimized RTP window to compare grain size to use poly silicon's SEM pictures and crystallization to analyze Raman curved lines.

  • PDF