• Title/Summary/Keyword: Polishing velocity

Search Result 68, Processing Time 0.024 seconds

The Effects of Ba-Ferrite Magnetic Abrasive Behavior on Polishing Characteristics (Ba-Ferrite 자기연마재의 거동이 연마특성에 미치는 영향)

  • 김희남;송승기;윤여권;김희원;김복수;안효종;심재환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.565-568
    • /
    • 2003
  • In this paper we deal with behavior of the magnetic abrasive using Ba-Ferrite on polishing characteristics in a new internal finishing of STS304 pipe applying magnetic abrasive polishing. The magnetic abrasive using Ba-Ferrite grain WA was used to resin bond fabricated at low temperature. And Ba-Ferrite of magnetic abrasive powder was crused into 200 mesh. The previous research made an experiment in the static and the dynamic state on the movement of magnetic abrasive grain. In this paper. We investigated into the changes of the movement of magnetic abrasive grain. In reference to this result. we have made the experiment which is set under the condition of the magnetic flux density. polishing velocity according to the form of magnetic brush.

  • PDF

Development of Magneto-Electrolytic-Abrasive Polishing System for Piston Pin (피스톤 핀의 자기전해 경면연마 시스템 개발)

  • 김정두
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.59-64
    • /
    • 1998
  • We need to achieve th mass product through methods of higher efficient, higher precise manufacturing process than those of existing precision abrasive machining. Thus, this study is to develop mirror-like surface machining technique of outer diameter of the piston pin by the compound magneto-electrolytic abrasive polishing system. The procedure of machining is followed as first, fulfill the pre-processing by cylindrical grinder, second, complete mirror-like surface by the method of magneto-electrolytic abrasive polishing used CBN non-woven abrasive pads. In this study, it was found that the best suitable conditions of mirror-like surface polishing were that the electrode density was 0.1A/$\textrm{cm}^2$, the applied pressure 1.5kgf/$\textrm{cm}^2$, the feed rate 0.5mm/rev, and the rotoation velocity of workpiece 80rpm, and that the surface roughness was reduced in this conditions.

  • PDF

Tribological Characteristics of Conditioning Methods on Polishing Pad (컨디셔닝 방식에 따른 패드의 트라이볼로지적 특성)

  • Lee, Hyun-Seop;Park, Boum-Young;Seo, Heon-Deok;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.358-359
    • /
    • 2005
  • Chemical mechanical polishing(CMP) process depends on a variety of variables. Especially, surface roughness of pad plays a key role in material removal in CMP in terms of transportation ability of pores and real contact area. The surface roughness is deteriorated with polishing time by applied pressure and relative velocity. In this reason, diamond conditioner has been used to maintain the roughness on the pad. The authors try to investigate the correlation between pad roughness and frictional behavior by comparing ex-situ conditioning with in-situ conditioning.

  • PDF

Experimental and Numerical Analysis of A Novel Ceria Based Abrasive Slurry for Interlayer Dielectric Chemical Mechanical Planarization

  • Zhuanga, Yun;Borucki, Leonard;Philipossian, Ara;Dien, Eric;Ennahali, Mohamed;Michel, George;Laborie, Bernard;Zhuang, Yun;Keswani, Manish;Rosales-Yeomans, Daniel;Lee, Hyo-Sang;Philipossian, Ara
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.53-57
    • /
    • 2007
  • In this study, a novel slurry containing ceria as the abrasive particles was analyzed in terms of its frictional, thermal and kinetic attributes for interlayer dielectric (ILD) CMP application. The novel slurry was used to polish 200-mm blanket ILD wafers on an $IC1000_{TM}$ K-groove pad with in-situ conditioning. Polishing pressures ranged from 1 to 5 PSI and the sliding velocity ranged from 0.5 to 1.5 m/s. Shear force and pad temperature were measured in real time during the polishing process. The frictional analysis indicated that boundary lubrication was the dominant tribological mechanism. The measured average pad leading edge temperature increased from 26.4 to $38.4\;^{\circ}C$ with the increase in polishing power. The ILD removal rate also increased with the polishing power, ranging from 400 to 4000 A/min. The ILD removal rate deviated from Prestonian behavior at the highest $p{\times}V$ polishing condition and exhibited a strong correlation with the measured average pad leading edge temperature. A modified two-step Langmuir-Hinshelwood kinetic model was used to simulate the ILD removal rate. In this model, transient flash heating temperature is assumed to dominate the chemical reaction temperature. The model successfully captured the variable removal rate behavior at the highest $p{\times}V$ polishing condition and indicates that the polishing process was mechanical limited in the low $p{\times}V$ polishing region and became chemically and mechanically balanced with increasing polishing power.

Finite Element Analysis of Large-Electron-Beam Polishing-Induced Temperature Distribution (대면적 전자빔 폴리싱 공정 시 발생하는 온도 분포 유한요소해석 연구)

  • Kim, J.S.;Kim, J.S.;Kang, E.G.;Lee, S.W.;Park, H.W.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.931-936
    • /
    • 2013
  • Recently, the use of large-electron-beam polishing for polishing complex metal surfaces has been proposed. In this study, the temperature induced by a large electron beam was predicted using the heat transfer theory. A finite element (FE) model of a continuous wave (CW) electron beam was constructed assuming Gaussian distribution. The temperature distribution and melting depth of an SUS304 sample were predicted by changing electron-beam polishing process parameters such as energy density and beam velocity. The results obtained using the developed FE model were compared with experimental results for verifying the melting depth prediction capability of the developed FE model.

A Study on Frictional Characteristics and Polishing Result of SiO2 Slurry in CMP (CMP시 SiO2 슬러리의 마찰 특성과 연마결과에 관한 연구)

  • Lee Hyunseop;Park Boumyoung;Seo Heondeok;Jung Jaewoo;Jeong Sukhoon;Jeong Haedo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.983-989
    • /
    • 2005
  • The effects of mechanical parameters on the characteristics of chemical mechanical polishing(CMP) can be directly evaluated by friction force. The piezoelectric quartz sensor for friction force measurement was installed, and friction force could be detected during CMP process. Furthermore, friction energy can be calculated by multiplying relative velocity by integration of the friction force throughout the polishing time. $SiO_2$ slurry for interlayer dielectric(ILD) CMP was used in this experiment to consider the relation of frictional characteristics and polishing results. From this experiment, it is proven that the friction energy is an essential factor of removal rate. Also, the friction force is related to removal amount per unit length(dH/ds) and friction energy has corelation to the removal rate(dH/dt) and process temporature. Moreover, within wafer non-unifornity(WIWNU) is related to coefficient of friction because of the mechanical moment equilibrium. Therefore, the prediction of polishing result would be possible by measuring friction force.

A Study of Material Removal Characteristics by Friction Monitoring System of Sapphire Wafer in Single Side DMP (사파이어 웨이퍼 DMP에서 마찰력 모니터링을 통한 재료 제거 특성에 관한 연구)

  • Jo, Wonseok;Lee, Sangjik;Kim, Hyoungjae;Lee, Taekyung;Lee, Seongbeom
    • Tribology and Lubricants
    • /
    • v.32 no.2
    • /
    • pp.56-60
    • /
    • 2016
  • Sapphire has a high hardness and strength and chemical stability as a superior material. It is used mainly as a material for a semiconductor as well as LED. Recently, the cover glass industry used by a sapphire is getting a lot of attention. The sapphire substrate is manufactured through ingot sawing, lapping, diamond mechanical polishing (DMP) and chemical mechanical polishing (CMP) process. DMP is an important process to ensure the surface quality of several nm for CMP process as well as to determine the final form accuracy of the substrate. In DMP process, the material removal is achieved by using the mechanical energy of the relative motion to each other in the state that the diamond slurry is disposed between the sapphire substrate and the polishing platen. The polishing platen is one of the most important factors that determine the material removal characteristics in DMP. Especially, it is known that the geometric characteristics of the polishing platen affects the material removal amount and its distribution. This paper investigated the material removal characteristics and the effects of the polishing platen groove in sapphire DMP. The experiments were preliminarily carried out to evaluate the sapphire material removal characteristics according to process parameters such as pressure, relative velocity and so on. In the experiment, the monitoring apparatus was applied to analyze process phenomena in accordance with the processing conditions. From the experimental results, the correlation was analyzed among process parameters, polishing phenomena and the material removal characteristics. The material removal equation based on phenomenological factors could be derived. And the experiment was followed to investigate the effects of platen groove on material removal characteristics.

Analysis of Polishing Mechanism and Characteristics of Aspherical Lens with MR Polishing (MR Polishing을 이용한 비구면 렌즈의 연마 메커니즘 및 연마 특성 분석)

  • Lee, Jung-Won;Cho, Myeong-Woo;Ha, Seok-Jae;Hong, Kwang-Pyo;Cho, Yong-Kyu;Lee, In-Cheol;Kim, Byung-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.36-42
    • /
    • 2015
  • The aspherical lens was designed to be able to array a focal point. For this reason, it has very curved surface. The aspherical lens is fabricated by injection molding or diamond turning machine. With the aspherical lens, tool marks and surface roughness affect the optical characteristics, such as transmissivity. However, it is difficult to polish free form surface shapes uniformly with conventional methods. Therefore, in this paper, the ultra-precision polishing method with MR fluid was used to polish an aspherical lens with 4-axis position control systems. A Tool path and polishing mechanism were developed to polish the aspherical lens shape. An MR polishing experiment was performed using a generated tool path with a PMMA aspherical lens after the turning process. As a result, surface roughness was improved from $R_a=40.99nm$, $R_{max}=357.1nm$ to $R_a=4.54nm$, $R_{max}=35.72nm$. Finally, the MR polishing system can be applied to the finishing process of fabrication of the aspherical lens.

A Study on Pressure Distribution for Uniform Polishing of Sapphire Substrate

  • Park, Chul jin;Jeong, Haedo;Lee, Sangjik;Kim, Doyeon;Kim, Hyoungjae
    • Tribology and Lubricants
    • /
    • v.32 no.2
    • /
    • pp.61-66
    • /
    • 2016
  • Total thickness variation (TTV), BOW, and surface roughness are essential characteristics for high quality sapphire substrates. Many researchers have attempted to increase removal rate by controlling the key process parameters like pressure and velocity owing to the high cost of consumables in sapphire chemical mechanical polishing (CMP). In case of the pressure approach, increased pressure owing to higher deviation of pressure over the wafer leads to significant degradation of the TTV. In this study, the authors focused on reducing TTV under the high-pressure conditions. When the production equipment polishes multiple wafers attached on a carrier, higher loads seem to be concentrated around the leading edge of the head; this occurs because of frictional force generated by the combination of table rotation and the height of the gimbal of the polishing head. We believe the skewed pressure distribution during polishing to be the main reason of within-wafer non-uniformity (WIWNU). The insertion of a hub ring between the polishing head and substrate carrier helped reduce the pressure deviation. Adjusting the location of the hub ring enables tuning of the pressure distribution. The results indicated that the position of the hub ring strongly affected the removal profile, which confirmed that the position of the hub ring changes the pressure distribution. Furthermore, we analyzed the deformation of the head via finite element method (FEM) to verify the pressure non-uniformity over the contact area Based on experiment and FEM results, we determined the optimal position of hub ring for achieving uniform polishing of the substrate.

Development of the Magnetic Abrasive Using Sr-Ferrite and GC (Sr-Ferrite와 GC를 이용한 자기연마재 개발)

  • Yun, Yeo-Kwon;Kim, Sang-Baek;Kim, Hee-Nam
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.2
    • /
    • pp.13-19
    • /
    • 2011
  • The magnetic polishing is the useful method to finish using magnetic power of magnet. That method is one of precision polishing techniques and has an aim of the clean technology using for the pure of gas and inside of the clean pipe. The magnetic abrasive polishing method is not so common for machine that it is not spreaded widely. There are rarely researcher in this field because of non-effectiveness of magnetic abrasive. Therefore, in this paper deals with development of the magnetic abrasive using Sr-Ferrite. In this development, abrasive grain GC used to resin bond fabricated low temperature. And Sr-Ferrite of magnetic abrasive powder fabricated that Sr-Ferrite was crused into 200 mesh. The XRD analysis result show that only GC abrasive and Sr-Ferrite crystal peaks detected which explains resin bond was not any more chemical reaction. From SEM analysis it is found that GC abrasive and Sr-Ferrite were strong bonding with each other by bond. The magnetic polishing is performed by polishing the surface of pipe by attracting magnetic abrasives with magnetic fields. This can be widely applied for finishing machinery fabrications such as various pipes and for other safety processes. In this paper, we could have investigated in to the changes of the movement of magnetic abrasive grain. In reference to this result, we could have made the experiment which is set under the condition of the magnetic flux density, polishing velocity according to the form of magnetic brush.