• Title/Summary/Keyword: Poisson effect

Search Result 331, Processing Time 0.025 seconds

Suggested Method for Determining a Complete Set of Micro-Parameters Quantitatively in PFC2D (PFC2D 활용을 위한 정량적 미시변수 결정법)

  • Jong, Yong-Hun;Lee, Chung-In
    • Tunnel and Underground Space
    • /
    • v.16 no.4 s.63
    • /
    • pp.334-346
    • /
    • 2006
  • The discrete element code in 2-D, PFC2D, has been used as a tool to simulate various phenomena in rock mechanics and rock engineering. However, the code has an disadvantage that procedure to determine micro-parameters, namely properties of particles and contacts is repetitive and time-consuming. In this study, we analyzed the effect of micro-parameters(for generation of a contact-bonded model) on macro-properties(that were measured numerically by uniaxial compressive test). Based on the analysis, also, the time-saving and reliable method was suggested to determine a complete set of micro-parameters. In order to verify the suggested method, numerical specimens were generated in PFC2D for 10 different rock types at home and abroad. By the two trials for each specimen, in the result, the Young's modulus, Poisson's ratio and uniaxial compressive strength could be reproduced with being in relative error by about 5% to the values obtained by laboratory tests.

Numerical Simulation of Wave Deformation due to a Submerged Structure with a Second-order VOF Method (2차 정확도 VOF기법을 활용한 수중구조물에 의한 파랑변화 예측)

  • Ha, Tae-Min;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.111-117
    • /
    • 2010
  • A three-dimensional numerical model is employed to investigate wave deformation due to a submerged structure. The three-dimensional numerical model solves the spatially averaged Navier-Stokes equations for two-phase flows. The LES(large-eddy-simulation) approach is adopted to model the turbulence effect by using the Smagorinsky SGS(sub-grid scale) closure model. The two-step projection method is employed in the numerical solutions, aided by the Bi-CGSTAB technique to solve the pressure Poisson equation for the filtered pressure field. The second-order accurate VOF(volume-of-fluid) method is used to track the distorted and broken free surface. A simple linear wave is generated on a constant depth and compared with analytical solutions. The model is then applied to study wave deformation due to a submerged structure and the predicted results are compared with available laboratory measurements.

Dependence of Channel Doping Concentration on Drain Induced Barrier Lowering for Asymmetric Double Gate MOSFET (비대칭 이중게이트 MOSFET에 대한 DIBL의 채널도핑농도 의존성)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.805-810
    • /
    • 2016
  • The dependence of drain induced barrier lowering(DIBL) is analyzed for doping concentration in channel of asymmetric double gate(DG) MOSFET. The DIBL, the important short channel effect, is described as lowering of source barrier height by drain voltage. The analytical potential distribution is derived from Poisson's equation to analyze the DIBL, and the DIBL is observed according to top/bottom gate oxide thickness and bottom gate voltage as well as channel doping concentration. As a results, the DIBL is significantly influenced by channel doping concentration. DIBL is significantly increased by doping concentration if channel length becomes under 25 nm. The deviation of DIBL is increasing with increase of oxide thickness. Top and bottom gate oxide thicknesses have relation of an inverse proportion to sustain constant DIBL regardless channel doping concentration. We also know the deviation of DIBL for doping concentration is changed according to bottom gate voltage.

Relation of Oxide Thickness and DIBL for Asymmetric Double Gate MOSFET (비대칭 이중게이트 MOSFET에서 산화막 두께와 DIBL의 관계)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.799-804
    • /
    • 2016
  • To analyze the phenomenon of drain induced barrier lowering(DIBL) for top and bottom gate oxide thickness of asymmetric double gate MOSFET, the deviation of threshold voltage is investigated for drain voltage to have an effect on barrier height. The asymmetric double gate MOSFET has the characteristic to be able to fabricate differently top and bottom gate oxide thickness. DIBL is, therefore, analyzed for the change of top and bottom gate oxide thickness in this study, using the analytical potential distribution derived from Poisson equation. As a results, DIBL is greatly influenced by top and bottom gate oxide thickness. DIBL is linearly decreased in case top and bottom gate oxide thickness become smaller. The relation of channel length and DIBL is nonlinear. Top gate oxide thickness more influenced on DIBL than bottom gate oxide thickness in the case of high doping concentration in channel.

Breakdown Voltages Deviation for Channel Dimension of Double Gate MOSFET (이중게이트 MOSFET의 채널구조에 따른 항복전압 변화)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.3
    • /
    • pp.672-677
    • /
    • 2013
  • This paper have analyzed the change of breakdown voltage for channel dimension of double gate(DG) MOSFET. The breakdown voltage to have the small value among the short channel effects of DGMOSFET to be next-generation devices have to be precisely analyzed. The analytical solution of Poisson's equation have been used to analyze the breakdown voltage, and Gaussian function been used as carrier distribution to analyze closely for experimental results. The breakdown voltages have been analyzed for device parameters such as channel thickness and doping concentration, and projected range and standard projected deviation of Gaussian function. Since this potential model has been verified in the previous papers, we have used this model to analyze the breakdown voltage. As a result, we know the breakdown voltage is influenced on Gaussian function and device parameters for DGMOSFET.

Analysis of Breakdown Voltages Deviation for Channel Dimension of Double Gate MOSFET (DGMOSFET의 채널구조에 따른 항복전압변화에 대한 분석)

  • Jung, Hakkee;Han, Jihyung;Jeong, Dongsoo;Lee, Jongin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.811-814
    • /
    • 2012
  • This paper have analyzed the change of breakdown voltage for channel dimension of double gate(DG) MOSFET. The breakdown voltage to have the small value among the short channel effects of DGMOSFET to be next-generation devices have to be precisely analyzed. The analytical solution of Poisson's equation have been used to analyze the breakdown voltage, and Gaussian function been used as carrier distribution to analyze closely for experimental results. The breakdown voltages have been analyzed for device parameters such as channel thickness and doping concentration, and projected range and standard projected deviation of Gaussian function. Since this potential model has been verified in the previous papers, we have used this model to analyze the breakdown voltage. Resultly, we know the breakdown voltage is influenced on Gaussian function and device parameters for DGMOSFET.

  • PDF

Analysis of Relation between Conduction Path and Threshold Voltages of Double Gate MOSFET (이중게이트 MOSFET의 전도중심과 문턱전압의 관계 분석)

  • Jung, Hakkee;Han, Jihyung;Lee, Jongin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.818-821
    • /
    • 2012
  • This paper have analyzed the change of threshold voltage for conduction path of double gate(DG) MOSFET. The threshold voltage roll-off among the short channel effects of DGMOSFET have become obstacles of precise device operation. The analytical solution of Poisson's equation have been used to analyze the threshold voltage, and Gaussian function been used as carrier distribution to analyze closely for experimental results. The threshold voltages for conduction path have been analyzed for device parameters such as channel length, channel thickness, gate oxide thickness and doping concentration. Since this potential model has been verified in the previous papers, we have used this model to analyze the threshold voltage. Resultly, we know the threshold voltage is greatly influenced on the change of conduction path for device parameters of DGMOSFET.

  • PDF

Analysis of Relation between Conduction Path and Breakdown Voltages of Double Gate MOSFET (DGMOSFET의 전도중심과 항복전압의 관계 분석)

  • Jung, Hakkee;Han, Jihyung;Kwon, Ohshin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.825-828
    • /
    • 2012
  • This paper have analyzed the change of breakdown voltage for conduction path of double gate(DG) MOSFET. The low breakdown voltage among the short channel effects of DGMOSFET have become obstacles of device operation. The analytical solution of Poisson's equation have been used to analyze the breakdown voltage, and Gaussian function been used as carrier distribution to analyze closely for experimental results. The change of breakdown voltages for conduction path have been analyzed for device parameters such as channel length, channel thickness, gate oxide thickness and doping concentration. Since this potential model has been verified in the previous papers, we have used this model to analyze the breakdown voltage. Resultly, we know the breakdown voltage is greatly influenced on the change of conduction path for device parameters of DGMOSFET.

  • PDF

Deviation of Threshold Voltages for Conduction Path of Double Gate MOSFET (이중게이트 MOSFET의 전도중심에 따른 문턱전압의 변화)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.11
    • /
    • pp.2511-2516
    • /
    • 2012
  • This paper have analyzed the change of threshold voltage for conduction path of double gate(DG) MOSFET. The threshold voltage roll-off among the short channel effects of DGMOSFET have become obstacles of precise device operation. The analytical solution of Poisson's equation have been used to analyze the threshold voltage, and Gaussian function been used as carrier distribution to analyze closely for experimental results. The threshold voltages for conduction path have been analyzed for device parameters such as channel length, channel thickness, gate oxide thickness and doping concentration. Since this potential model has been verified in the previous papers, we have used this model to analyze the threshold voltage. Resultly, we know the threshold voltage is greatly influenced on the change of conduction path for device parameters of DGMOSFET.

A study using HGLM on regional difference of the dead due to injuries (손상으로 인한 사망자의 지역별 차이에 대한 HGLM을 이용한 연구)

  • Kim, Kil-Hun;Noh, Maeng-Seok;Ha, Il-Do
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.2
    • /
    • pp.137-148
    • /
    • 2011
  • In this paper, we systematically investigate regional differences of the dead due to injuries in cities, towns and counties about transportation accidents, suicides and fall accidents, which have recently been an important issue of health problems in Korea, The data are from the Annual Report on the Cause of Death Statistics in Korea in 2008. They include the deaths over the age 19 from transportation accidents, suicides and fall accidents with the criterion of the International Statistical Classification of Diseases. Poisson HGLM is applied to estimate the mortality rate under the assumption that the number of deaths follow a Poisson distribution, by considering regions as random effects and by adjusting age, sex and standardized residence tax as fixed effects. Using the results of random effects prediction, the regional differences in cities, counties and towns are marked in disease mapping. The results showed that there were significant regional differences of mortality rates for transportation accidents and suicides, but no significant differences for fall accidents.