• Title/Summary/Keyword: Poisson

Search Result 2,054, Processing Time 0.028 seconds

An application to Zero-Inflated Poisson Regression Model

  • Kim, Kyung-Moo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.1
    • /
    • pp.45-53
    • /
    • 2003
  • The Zero-Inflated Poisson regression is a model for count data with exess zeros. When the reponse variables have excess zeros, it is not easy to apply the Poisson regression model. In this paper, we study and simulate the zero-inflated Poisson regression model. An real example was applied to this model. Regression parameters are estimated by using MLE's. We also compare the fitness of zero-inflated Poisson model with the Poisson regression and decision tree model.

  • PDF

Tests for the Change-Point in the Zero-Inflated Poisson Distribution

  • Kim, Kyung-Moo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.2
    • /
    • pp.387-394
    • /
    • 2004
  • Zero-Inflated Poisson distribution is Poisson distribution with excess zeros. Recently defects of product hardley happen in the manufacturing process. In this case it is desirable to apply to the Zero-Inflated Poisson distribution rather than Poisson. Our target of this paper is to study the tests for changes of rate of defects after the unknown change-point. We are going to compare the powers of the two proposed tests with likelihood tests by the simulations.

  • PDF

A Study on the Power Comparison between Logistic Regression and Offset Poisson Regression for Binary Data

  • Kim, Dae-Youb;Park, Heung-Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.4
    • /
    • pp.537-546
    • /
    • 2012
  • In this paper, for analyzing binary data, Poisson regression with offset and logistic regression are compared with respect to the power via simulations. Poisson distribution can be used as an approximation of binomial distribution when n is large and p is small; however, we investigate if the same conditions can be held for the power of significant tests between logistic regression and offset poisson regression. The result is that when offset size is large for rare events offset poisson regression has a similar power to logistic regression, but it has an acceptable power even with a moderate prevalence rate. However, with a small offset size (< 10), offset poisson regression should be used with caution for rare events or common events. These results would be good guidelines for users who want to use offset poisson regression models for binary data.

DUALITY OF CO-POISSON HOPF ALGEBRAS

  • Oh, Sei-Qwon;Park, Hyung-Min
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.17-21
    • /
    • 2011
  • Let A be a co-Poisson Hopf algebra with Poisson co-bracket $\delta$. Here it is shown that the Hopf dual $A^{\circ}$ is a Poisson Hopf algebra with Poisson bracket {f, g}(x) = < $\delta(x)$, $f\;{\otimes}\;g$ > for any f, g $\in$ $A^{\circ}$ and x $\in$ A if A is an almost normalizing extension over the ground field. Moreover we get, as a corollary, the fact that the Hopf dual of the universal enveloping algebra U(g) for a finite dimensional Lie bialgebra g is a Poisson Hopf algebra.

A GLR Chart for Monitoring a Zero-Inflated Poisson Process (ZIP 공정을 관리하는 GLR 관리도)

  • Choi, Mi Lim;Lee, Jaeheon
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.2
    • /
    • pp.345-355
    • /
    • 2014
  • The number of nonconformities in a unit is commonly modeled by a Poisson distribution. As an extension of a Poisson distribution, a zero-inflated Poisson(ZIP) process can be used to fit count data with an excessive number of zeroes. In this paper, we propose a generalized likelihood ratio(GLR) chart to monitor shifts in the two parameters of the ZIP process. We also compare the proposed GLR chart with the combined cumulative sum(CUSUM) chart and the single CUSUM chart. It is shown that the overall performance of the GLR chart is comparable with CUSUM charts and is significantly better in some cases where the actual directions of the shifts are different from the pre-specified directions in CUSUM charts.

Material Characterization of Weld-Zone Using Poisson's Ratio Distribution

  • Park, Jin-Ha;Kim, Young-H.;Lee, Seung-S.;Kim, Young-Gil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.6
    • /
    • pp.586-590
    • /
    • 2009
  • Poisson's ratio, one of elastic constants of elastic solids, has not attracted attention due to its narrow range and difficult measurement. Transverse wave velocity as well as longitudinal wave velocity should be measured for nondestructive measurement of Poisson's ratio. Rigid couplants for transverse wave is one of obstacle for scanning over specimen. In the present work, a novel measurement of Poisson's ratio distribution was applied. Immersion method was employed for the scanning over the specimen. Echo signals of normal beam longitudinal wave were collected, and transverse wave modes generated by mode conversion were identified. From transit time of longitudinal and transverse waves, Poisson's ratio was determined without the information of specimen thickness. Poisson's ratio distribution of the carbon steel weldment was mapped. Heat affected zone of the weldment was clearly distinguished from base and filler metals.

ANALYSIS OF THE VLASOV-POISSON EQUATION BY USING A VISCOSITY TERM

  • Choi, Boo-Yong;Kang, Sun-Bu;Lee, Moon-Shik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.501-516
    • /
    • 2013
  • The well-known Vlasov-Poisson equation describes plasma physics as nonlinear first-order partial differential equations. Because of the nonlinear condition from the self consistency of the Vlasov-Poisson equation, many problems occur: the existence, the numerical solution, the convergence of the numerical solution, and so on. To solve the problems, a viscosity term (a second-order partial differential equation) is added. In a viscosity term, the Vlasov-Poisson equation changes into a parabolic equation like the Fokker-Planck equation. Therefore, the Schauder fixed point theorem and the classical results on parabolic equations can be used for analyzing the Vlasov-Poisson equation. The sequence and the convergence results are obtained from linearizing the Vlasove-Poisson equation by using a fixed point theorem and Gronwall's inequality. In numerical experiments, an implicit first-order scheme is used. The numerical results are tested using the changed viscosity terms.

Shape Recognition and Classification Based on Poisson Equation- Fourier-Mellin Moment Descriptor

  • Zou, Jian-Cheng;Ke, Nan-Nan;Lu, Yan
    • International Journal of CAD/CAM
    • /
    • v.8 no.1
    • /
    • pp.69-72
    • /
    • 2009
  • In this paper, we present a new shape descriptor, which is named Poisson equation-Fourier-Mellin moment Descriptor. We solve the Poisson equation in the shape area, and use the solution to get feature function, which are then integrated using Fourier-Mellin moment to represent the shape. This method develops the Poisson equation-geometric moment Descriptor proposed by Lena Gorelick, and keeps both advantages of Poisson equation-geometric moment and Fourier-Mellin moment. It is proved better than Poisson equation-geometric moment Descriptor in shape recognition and classification experiments.

Correlation between frequency and Poisson's ratio: Study of durability of armchair SWCNTs

  • Muzamal Hussain;Mohamed A. Khadimallah;Abdelouahed Tounsi
    • Computers and Concrete
    • /
    • v.32 no.3
    • /
    • pp.303-311
    • /
    • 2023
  • An analysis of the Poisson's ratios influence of single walled carbon nanotubes (SWCNTs) based on Sander's shell theory is carried out. The effect of Poisson's ratio, boundary conditions and different armchairs SWCNTs is discussed and studied. The Galerkin's method is applied to get the eigen values in matrix form. The obtained results shows that, the decrease in ratios of Poisson, the frequency increases. Poisson's ratio directly measures the deformation in the material. A high Poisson's ratio denotes that the material exhibits large elastic deformation. Due to these deformation frequencies of carbon nanotubes increases. The frequency value increases with the increase of indices of single walled carbon nanotubes. The prescribe boundary conditions used are simply supported and clamped simply supported. The Timoshenko beam model is used to compare the results. The present method should serve as bench mark results for agreeing the results of other models, with slightly different value of the natural frequencies.

Note on the Transformed Geometric Poisson Processes

  • Park, Jeong-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.8 no.2
    • /
    • pp.135-141
    • /
    • 1997
  • In this paper, it is investigated the properties of the transformed geometric Poisson process when the intensity function of the process is a distribution of the continuous random variable. If the intensity function of the transformed geometric Poisson process is a Pareto distribution then the transformed geometric Poisson process is a strongly P-process.

  • PDF