Acknowledgement
This study is supported via funding from Prince Satam bin Abdulaziz University project number (PSAU/2023/R/1444).
References
- Ansari, R. and Arash, B. (2013), "Nonlocal Flugge shell model for vibrations of double-walled carbon nanotubes with different boundary conditions", J. Appl. Mech., 80(2), 021006. https://doi.org/10.1115/1.4007432.
- Ansari, R. and Rouhi, H. (2015), "Nonlocal Flugge shell model for the axial buckling of single-walled Carbon nanotubes: An analytical approach", Int. J. Nano Dimens., 6(5), 453-462. https://doi.org/10.1142/S179329201250018X.
- Banerjee, J. and Williams, F. (1996), "Exact dynamic stiffness matrix for composite Timoshenko beams with applications", J. Sound Vib., 194(4), 573-585. https://doi.org/10.1006/jsvi.1996.0378.
- Chawis, T., Somchai, C. and Li, T. (2013), "Nonlocal theory for free vibration of single-walled carbon nanotubes", Adv. Mater. Res., 747, 257-260. https://doi.org/10.1093/jom/ufab028.
- De Heer, W.A., Chatelain, A. and Ugarte, D. (1995), "A carbon nanotube field-emission electron source", Sci., 270(5239), 1179-1180. https://doi.org/10.1126/science.270.5239.1179.
- Demir, C ., Civalek, O . and Akgoz, B. (2010), "Free vibration analysis of carbon nanotubes based on shear deformable beam theory by discrete singular convolution technique", Math. Comput. Appl., 15(1), 57-65. https://doi.org/10.3390/mca15010057.
- Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039.
- Fang, B., Zhen, Y.X., Zhang, C.P. and Tang, Y. (2013), "Nonlinear vibration analysis of double-walled carbon nanotubes based on nonlocal elasticity theory", Appl. Math. Model., 37(3), 1096-1107. https://doi.org/10.1016/j.apm.2012.03.032.
- Flugge, W. (1960), Stresses in Shells, Springer, Berlin, Germany.
- Faroughi, S. and Shaat, M. (2018), "Poisson's ratio effects on the mechanics of auxetic nanobeams", Eur. J. Mech. A/Solids, 70, 8-14. https://doi.org/10.1016/j.euromechsol.2018.01.011.
- Fauzi, M.A., Arshad1a, M.F., Nor, N.M. and Ghazali, E. (2022), "Sustainable controlled low-strength material: Plastic properties and strength optimization", Comput. Concrete, 30(6), 393-407. https://doi.org/10.12989/cac.2022.30.6.393.
- Ghavanloo, E. and Fazelzadeh, S.A. (2012), "Vibration characteristics of single-walled carbon nanotubes based on an anisotropic elastic shell model including chirality effect", Appl. Math. Model., 36(10), 4988-5000. https://doi.org/10.1016/j.apm.2011.12.036.
- He, X.Q., Eisenberger, M. and Liew, K.M. (2006), "The effect of van der Waals interaction modeling on the vibration characteristics of multi-walled carbon nanotubes", J. Appl. Phys., 100(12), 124317. https://doi.org/10.1063/1.2399331.
- Hu, Z.L., Guo, X.M. and Ru, C.Q. (2008), "Enhanced critical pressure for buckling of carbon nanotubes due to an inserted linear carbon chain", Nanotechnol., 19(30), 305703. https://doi.org/10.1088/0957-4484/19/30/305703.
- Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(7), 56-58. https://doi.org/10.1038/354056a0.
- Kepenek, E., Korkmaz K.A. and Gencel, Z. (2023), "Comparative study on rapid seismic risk prioritization for reinforced concrete buildings in Antalya, Turkiye", Comput. Concrete, 31(3), 185-195. https://doi.org/10.12989/cac.2023.31.3.185.
- Kuzuo, R., Terauchi, M.T.M. and Tanaka, M.T.M. (1992), "Electron energy-loss spectra of carbon nanotubes", Japan. J. Appl. Phys., 31(10B), L1484. https://doi.org/10.1143/JJAP.31.L1484.
- Kwon, Y.K. and Tomanek, D. (1998), "Electronic and structural properties of multiwall carbon nanotubes" Phys. Rev. B, 58, 16001-16004. https://doi.org/10.1021/jp993592k.
- Lal, A. and Markad, K. (2018), "Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams", Comput. Concrete, 22(6), 501-514. https://doi.org/10.12989/cac.2018.22.6.501.
- Leissa, A.W. (1993), Vibration of Shells, Acoustical Society of America, Columbus, OH, USA.
- Leung, A.Y.T. and Kuang, J.L. (2005), "Nanomechanics of a multi-walled carbon nanotube via Flugge's theory of a composite cylindrical lattice shell", Phys. Rev. B, 71(16), 165415. https://doi.org/10.1103/PhysRevB.71.165415.
- Liang, X., Hu, S. and Shen, S. (2014), "A new Bernoulli-Euler beam model based on a simplified strain gradient elasticity theory and its applications", Compos. Struct., 111, 317-323. https://doi.org/10.1016/j.compstruct.2014.01.019.
- Liew, K.M. and Wang, Q. (2007), "Analysis of wave propagation in carbon nanotubes via elastic shell theories", Int. J. Eng. Sci., 45(2-8), 227-241. https://doi.org/10.1016/j.ijengsci.2007.04.001.
- Majeed, S.S., Haido, J.H., Atrushi, D.S., Al-Kamaki, Y., Dinkha, Y.Z., Saadullah, S.T. and Tayeh, B.A. (2021), "Properties of self-compacted concrete incorporating basalt fibers: Experimental study and gene expression programming (GEP) analysis", Comput. Concrete, 28(5), 451-463. https://doi.org/10.12989/cac.2021.28.5.451.
- Mousavi, M., Mohammadimehr, M. and Rostami, R. (2019), "Analytical solution for buckling analysis of micro sandwich hollow circular plate", Comput. Concrete, 24(3), 185-192. https://doi.org/10.12989/cac.2019.24.3.185.
- Natsuki, T., Leib, X.W., Ni, Q.Q. and Endo, M. (2010), "Vibrational analysis of double-walled carbon nanotubes with inner and outer nanotubes of different lengths", Phys. Lett. A, 374, 4684-4689. https://doi.org/10.1016/j.physleta.2010.08.080.
- Rabczuk, T., Areias, P.M.A. and Belytschko, T. (2007), "A meshfree thin shell method for non-linear dynamic fracture", Int. J. Numer. Method. Eng., 72(5), 524-548. https://doi.org/10.1002/nme.2013.
- Rao, A.M., Richter, E., Bandow, S., Chase, B., Eklund, P.C., Williams, K.A. and Dresselhaus, M.S. (1997), "Diameter-selective Raman scattering from vibrational modes in carbon nanotubes", Sci., 275(5297), 187-191. https://doi.org/10.1126/science.275.5297.187.
- Selim, M.M., Althobaiti, S., Yahia, I.S., Mohammed, I.M., Hussin, A.M. and Mohamed, A.B.A. (2022), "Impacts of surface irregularity on vibration analysis of single-walled carbon nanotubes based on Donnell thin shell theory", Adv. Nano Res., 12(5), 483-488. https://doi.org/10.12989/anr.2022.12.5.483.
- Stephan, O., Ajayan, P.M., Colliex, C., Redlich, P., Lambert, J.M., Bernier, P. and Lefin, P. (1994), "Doping graphitic and carbon nanotube structures with boron and nitrogen", Sci., 266(5191), 1683-1685. https://doi.org/10.1126/science.266.5191.1683.
- Su, Y.C. and Cho, T.Y. (2021), "Free vibration of a single-walled carbon nanotube based on the nonlocal Timoshenko beam model", J. Mech., 37, 616-635. https://doi.org/10.1093/jom/ufab028.
- Sun, C.Q. and Liu, K.X. (2009), "Vibration of multi-walled carbon nanotubes with initial axial force and radial pressure", J. Phys. D: Appl. Phys., 42(17), 175412. https://doi.org/10.1088/0022-3727/42/17/175412.
- Torkaman-Asadi, M.A., Rahmanian, M. and Firouz-Abadi, R.D. (2015), "Free vibrations and stability of high-speed rotating carbon nanotubes partially resting on Winkler foundations", Compos. Struct., 126, 52-61. https://doi.org/10.1016/j.compstruct.2015.02.037.
- Tsang, S.C., Harris, P.J.F. and Green, M.L.H. (1993), "Thinning and opening of carbon nanotubes by oxidation using carbon dioxide", Nature, 362(6420), 520-522. https://doi.org/10.1038/362520a0.
- Vieira, A.A., Melo, G.S.S. and Miranda, A.C. (2020), "RC deep beams with unconventional geometries: Experimental and numerical analyses", Comput. Concrete, 26(4), 351-365. https://doi.org/10.12989/cac.2020.26.4.351.
- Yang, J., Ke, L.L. and Kitipornchai, S. (2010), "Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", Phys. E: Low-Dimens. Syst. Nanostruct., 42(5), 1727-1735. https://doi.org/10.1016/j.physe.2010.01.035.
- Zamani, A., Kolahchi, R. and Bidgoli, M.R. (2017), "Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods", Comput. Concrete, 20(6), 671-682. https://doi.org/10.12989/cac.2017.20.6.671.
- Strozzi, M., Smirnov, V.V., Pellicano, F. and Kovaleva, M. (2022), "Nonlocal anisotropic elastic shell model for vibrations of double-walled carbon nanotubes under nonlinear van der Waals interaction forces", Int. J. Non-Linear Mech., 146, 104172. https://doi.org/10.1016/j.ijnonlinmec.2022.104172.
- Strozzi, M., Elishakoff, I.E., Bochicchio, M., Cocconcelli, M., Rubini, R. and Radi, E. (2023), "A comparison of shell theories for vibration analysis of single-walled carbon nanotubes based on an anisotropic elastic shell model", Nanomater., 13(8), 1390. https://doi.org/10.3390/nano13081390.