• Title/Summary/Keyword: Plant-growth-promoting bacteria

Search Result 174, Processing Time 0.026 seconds

An Auxin Producing Plant Growth Promoting Rhizobacterium Bacillus subtilis AH18 which has Siderophore-Producing Biocontrol Activity (Auxin과 Siderophore 생산성 다기능 생물방제균 Bacillus subtilis AH18)

  • Jung Hee-Kyoung;Kim Jin-Rak;Woo Sang-Min;Kim Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.2
    • /
    • pp.94-100
    • /
    • 2006
  • To isolate a bacterium that produces plant growth promoting hormone, a total of 29 bacteria were obtained from the soil in Gyeongsan, Korea. Among these, 14 strains were selected by their positive reaction on Salkowski to produce auxin. All of these were then tested for their property to produce siderophore using CAS (chrome azurol S) blue agar, and one was chosen for its ability to produce both, auxin and siderophore. This strain, denoted, AHl8, showed 1.5 times higher adventitious root induction rates than controls, using mung-beans. The strain also showed efficient biocontrol properties towards Fusarium-wilt of tomatoes in artificial pot assays. The strain was identified as Bacillus subtilis by 16s rDNA comparison and Biolog analyses. Growth and media conditions for Bacillus subtilis AH1 8 to highly produce siderophore were also investigated.

Glycine max Merr enhances the viability and adhesion ability of Lactobacillus buchneri in gastrointestinal condition in vitro.

  • Seo, Jae-Bin;Park, Bog-Im;Myung, Hyun;Sim, Hyeon-Jae;Lee, Hoon-Yeon;Kim, Seong-Oh;Song, Kyoung-Ha;Lee, So-Jin;Cho, Jung Hee;Jeon, Yong-Deok;Jin, Jong-Sik
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.127-127
    • /
    • 2018
  • Probiotics are microorganisms that have beneficial effects on the health of the host. The health promoting effect by probiotics influences suppressing harmful bacteria, prevention of constipation, blood cholesterol reduction and regulation of blood pressure. Prebiotics are used to promote the growth or activity of microorganisms. Synbiotics, which are a mixture of probiotics and prebiotics, synergize in the intestines by complementing each other. Synbiotics not only improves the viability of the probiotics while passing through the gastrointestinal tract, maintain intestinal homeostasis, but also regulate balance of harmful and useful bacterial growth. Glycine max Merr (GMM) has been widely used in Asian countries to treat cancer, obesity, oxidative stress and imbalanced immune diseases. In addition, it has been reported that dietary fiber-rich grains promote bowel movements and prevent constipation. In this study, we investigated the viability of LactobacillIus buchneri (L.buchneri) strains, known as lactic acid bacteria under conditions of gastric fluid and intestinal fluid to determine the suitability of L.buchneri as probiotics. The adhesion ability of L.buchneri to caco-2 cells was also confirmed. The present studies showed that GMM extract promoted the growth and activity of L.buchneri strains as prebiotics. Also, this results suggested that the mixture of L.buchneri and GMM extract can helps maintain intestinal health and healthy body as synbiotics and health functional food material.

  • PDF

Isolation of Indole-3-acetic acid (IAA) producing Arthrobacter sp. and plant growth promotion effect (Indole-3-acetic acid (IAA) 생성 Arthrobacter sp.의 분리 및 식물 생육촉진 효과)

  • Da Som Kim;Ho-Young Shin;Song-Ih Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.831-838
    • /
    • 2022
  • An auxin-producing bacteria, KSD16, KSD33, and KSD36 were isolated from agricultural soil. The strain KSD16, KSD33, and KSD36 was classified as a strain of Arthrobacter sp. based on phylogenetic analysis of 16S rRNA gene. The isolated KDS16, KDS33, and KSD36 was confirmed to produce indole-3-acetic acid (IAA), which is one of the auxin hormones. When the concentration of IAA was assessed the maximum concentration of IAA, 206.62 mg L-1, was detected from the culture broth incubated in R2A medium containing 0.1% L-tryptophan for 48 h at 28 ℃. To study the effect of IAA producing bacteria on germination rate, seeds of Mung bean were prepared for each treatment. KSD16, KSD33, and KSD36 showed significant increase in root length and number of adventitious roots than the controls. To investigate the growth-promoting effects on the crops, Arthrobacter species were placed in water cultures and seed pots of mung beans. In consequence, the seed germination of mung beans was 73.4% higher than the control.

Arsenic Detoxification by As(III)-Oxidizing Bacteria: A Proposition for Sustainable Environmental Management

  • Shamayita Basu;Samir Kumar Mukherjee;Sk Tofajjen Hossain
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Arsenic (As), which is ubiquitous throughout the environment, represents a major environmental threat at higher concentration and poses a global public health concern in certain geographic areas. Most of the conventional arsenic remediation techniques that are currently in use have certain limitations. This situation necessitates a potential remediation strategy, and in this regard bioremediation technology is increasingly important. Being the oldest representativse of life on Earth, microbes have developed various strategies to cope with hostile environments containing different toxic metals or metalloids including As. Such conditions prompted the evolution of numerous genetic systems that have enabled many microbes to utilize this metalloid in their metabolic activities. Therefore, within a certain scope bacterial isolates could be helpful for sustainable management of As-contamination. Research interest in microbial As(III) oxidation has increased recently, as oxidation of As(III) to less hazardous As(V) is viewed as a strategy to ameliorate its adverse impact. In this review, the novelty of As(III) oxidation is highlighted and the implication of As(III)-oxidizing microbes in environmental management and their prospects are also discussed. Moreover, future exploitation of As(III)-oxidizing bacteria, as potential plant growth-promoting bacteria, may add agronomic importance to their widespread utilization in managing soil quality and yield output of major field crops, in addition to reducing As accumulation and toxicity in crops.

Effects on the Soil Microbial Diversity and Growth of Red Pepper by Treated Microbial Agent in the Red Pepper Field (경작지토양에서 미생물제제가 미생물의 다양성과 고추의 생육에 미치는 영향)

  • An, Chang-Hwan;Lim, Jong-Hui;Kim, Yo-Hwan;Jung, Byung-Kwon;Kim, Jin-Won;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.1
    • /
    • pp.30-38
    • /
    • 2012
  • We investigated the effects on soil microbial diversity and the growth promotion of red pepper resulting from inoculation with a microbial agent composed of Bacillus subtilis AH18, B. licheniformis K11 and Pseudomonas fluorescens 2112 in a red pepper farming field. Photosynthetic bacteria, Trichoderma spp., Azotobacter spp., Actinomycetes, nitrate oxidizing bacteria, nitrite oxidizing bacteria, nitrogen fixing bacteria, denitrifying bacteria, phosphate solubilizing bacteria, cellulase producing bacteria, and urease producing bacteria are all indicator microbes of healthy soil microbial diversity. The microbial diversity of the consortium microbial agent treated soil was seen to be 1.1 to 14 times greater than soils where other commercial agent treatments were used, the latter being the commercial agent AC-1, and chemical fertilizer. The yield of red pepper in the field with the treated consortium microbial agent was increased by more than 15% when compared to the other treatments. Overall, the microbial diversity of the red pepper farming field soil was improved by the consortium microbial agent, and the promotion of growth and subsequent yield of red pepper was higher than soils where the other treatments were utilized.

Alleviation of Salt Stress by Enterobacter sp. EJ01 in Tomato and Arabidopsis Is Accompanied by Up-Regulation of Conserved Salinity Responsive Factors in Plants

  • Kim, Kangmin;Jang, Ye-Jin;Lee, Sang-Myeong;Oh, Byung-Taek;Chae, Jong-Chan;Lee, Kui-Jae
    • Molecules and Cells
    • /
    • v.37 no.2
    • /
    • pp.109-117
    • /
    • 2014
  • Microbiota in the niches of the rhizosphere zones can affect plant growth and responses to environmental stress conditions via mutualistic interactions with host plants. Specifically, some beneficial bacteria, collectively referred to as Plant Growth Promoting Rhizobacteria (PGPRs), increase plant biomass and innate immunity potential. Here, we report that Enterobacter sp. EJ01, a bacterium isolated from sea china pink (Dianthus japonicus thunb) in reclaimed land of Gyehwa-do in Korea, improved the vegetative growth and alleviated salt stress in tomato and Arabidopsis. EJ01 was capable of producing 1-aminocy-clopropane-1-carboxylate (ACC) deaminase and also exhibited indole-3-acetic acid (IAA) production. The isolate EJ01 conferred increases in fresh weight, dry weight, and plant height of tomato and Arabidopsis under both normal and high salinity conditions. At the molecular level, short-term treatment with EJ01 increased the expression of salt stress responsive genes such as DREB2b, RD29A, RD29B, and RAB18 in Arabidopsis. The expression of proline biosynthetic genes (i.e. P5CS1 and P5CS2) and of genes related to priming processes (i.e. MPK3 and MPK6) were also up-regulated. In addition, reactive oxygen species scavenging activities were enhanced in tomatoes treated with EJ01 in stressed conditions. GFP-tagged EJ01 displayed colonization in the rhizosphere and endosphere in the roots of Arabidopsis. In conclusion, the newly isolated Enterobacter sp. EJ01 is a likely PGPR and alleviates salt stress in host plants through multiple mechanisms, including the rapid up-regulation of conserved plant salt stress responsive signaling pathways.

Actinobacteria Isolation from Metal Contaminated Soils for Assessment of their Metal Resistance and Plant Growth Promoting (PGP) Characteristics

  • Tekaya, Seifeddine Ben;Tipayno, Sherlyn;Chandrasekaran, Murugesan;Yim, Woo-Jong;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.593-601
    • /
    • 2012
  • Heavy metals and metalloids removal can be considered as one of the most important world challenges because of their toxicity and direct impact on human health. Many processes have been introduced but biological processes of remediation seem to offer the most suitable solution in terms of efficiency and low cost. Actinobacteria constitute one of the major microbial populations in soil, and this can be attributed to their adaptive morphological structure as well as their exceptional metabolic power. Among microbes, actinobacteria are morphologic intermediate between fungi and bacteria. Studies on microbial diversities in metal contaminated lands have shown that actinobacteria may constitute a dominantly active microbiota in addition to ${\alpha}$ Proteobacteria. Furthermore, isolation studies have shown metal removal mechanisms which are reminiscent of notable multiresistant strains, such as Cupriavidus metallidurans. Apart from members of genus Streptomyces, which produce more than 90% of commercialized antibiotics, and the nitrogen fixing Frankia, little attention has been given to other members of this phylum. This is because of difficult culture condition requirements and maintenance. In this review, we focused on specific isolation of actinobacteria and their potential applications in metal bioremediation and plant growth promotion.

Optimization of Indole-3-acetic Acid (IAA) Production by Bacillus megaterium BM5

  • Lee, Jae-Chan;Whang, Kyung-Sook
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.461-468
    • /
    • 2016
  • One of the important phytohormones produced by plant growth promoting bacteria is the auxin; indole-3-acetic acid (IAA), with L-tryptophan as the precursor. In this study, we focused on the investigation of optimal conditions for the production of IAA by Bacillus megaterium BM5. We investigated culturing conditions, such as incubation temperature, pH of the culture medium and incubation period, with varying media components such as inoculation volume, tryptophan concentration and carbon and nitrogen source. Besides, optimization study intended for high IAA production was carried out with fermentation parameters such as rpm and aeration. The initial yield of $42{\mu}g\;IAA\;ml^{-1}$ after 24 hr increased to $85{\mu}g\;ml^{-1}$ when 5% (v/v) of L-tryptophan was used in the culture broth. The maximum yield of $320{\mu}g\;IAA\;ml^{-1}$ was observed in trypticase soy broth (TSB) supplemented with starch and soybean meal as C and N sources with a C/N ratio of 3:1 (v/v) at $30^{\circ}C$, pH 8.0 for 48 hrs with 1.0 vvm and 250 rpm in 5 L working volume using 10 L scale fermenter. The bacterial auxin extracted from the culture broth was confirmed by thin layer chromatography and high-performance liquid chromatography and effect on plant growth was confirmed by root elongation test.

Isolation and Identification of Antagonistic Bacteria for Biological Control of Large Patch Disease of Zoysiagrass Caused by Rhizoctonia solani AG2-2 (IV) (들잔디 갈색퍼짐병의 생물학적 방제를 위한 길항 세균의 분리와 동정)

  • Song, Chi-Hyun;Islam, Md. Rezuanul;Chang, Tae-Hyun;Lee, Yong-Se
    • Asian Journal of Turfgrass Science
    • /
    • v.26 no.1
    • /
    • pp.8-16
    • /
    • 2012
  • The objective of this study was to identify bacterial antagonists of R. solani AG2-2 (IV) on zoysiagrass and to evaluate their antifungal activity in vitro and in vivo to select an antagonistic isolate. Antagonistic isolates that inhibit large patch disease caused by R. solani AG2-2 (IV) in zoysiagrass were selected from several soils, and their antagonistic activities were investigated in vitro and in vivo. Of 216 bacterial isolates, 67 inhibited several plant pathogenic fungi. The isolates that inhibited stem-segment colonization by R. solani AG2-2 (IV) in zoysiagrass were tested in a growth chamber. Eleven isolates were active as plant growth promoting isolates. Among them, five plant growth promoting isolates and their concentration dependent efficiency on zoysiagrass following inoculation with R. solani AG2-2 (IV) was evaluated. Isolate H33 was one of the potential antagonistic isolates, and it was further tested against various plant pathogens. H33 not only suppressed the disease caused by R. solani AG2-2 (IV) on zoysiagrass but also promoted leaf weight and leaf height of zoysiagrass under growth chamber and greenhouse conditions. The H33 isolate, which belongs to Streptomyces arenae, was identified through physiological, biochemical, and 16S rDNA studies. Further studies will investigate the cultural characterization of S. arenae H33 and isolation and identification of antifungal substance produced by S. arenae H33.

Characterization of Rhizobacteria Isolated from Family Solanaceae Plants in Dokdo Island (독도에 서식하는 가지과식물로부터 분리된 근권세균의 특성)

  • Ham, Mi-Seon;Park, Yu-Mi;Sung, Hye-Ri;Sumayo, Marilyn;Ryu, Choong-Min;Park, Seung-Hwan;Ghim, Sa-Youl
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.2
    • /
    • pp.110-117
    • /
    • 2009
  • To characterize plant root-associated bacteria in wild plant family Solanaceae, Solanum nigrum L. plants were collected in Dokdo island. Forty four strains of nitrogen-fixing or spore-forming bacteria were isolated from rhizosphere of Solanum nigrum L. plants. Among these, 19 strains were able to produce auxin. Thirteen strains of these produced siderophore as determined by color reaction on CAS-blue plate, 8 strains were able to solubilize phosphate. The 16S rDNA genes of the isolated bacteria were amplified and sequenced. Model plants, pepper and tobacco, were established in order to evaluate the bacterial capacities eliciting growth promotion and induced systemic resistance. The plants treated with strain KUDC1009 were more resistant and capable of growth-promotion than control plants when challenged by either Xanthomonas axonopodis pv. vesicatoria or Erwinia carotovora sub. carotovora strain SCC1. Rhizobacteria isolated from Dokdo island can promote growth of wild type Solanum nigrum L. under much environmental stresses.