DOI QR코드

DOI QR Code

Actinobacteria Isolation from Metal Contaminated Soils for Assessment of their Metal Resistance and Plant Growth Promoting (PGP) Characteristics

  • Tekaya, Seifeddine Ben (Department of Agricultural and biological Chemistry, Chungbuk National University) ;
  • Tipayno, Sherlyn (Department of Agricultural and biological Chemistry, Chungbuk National University) ;
  • Chandrasekaran, Murugesan (Department of Agricultural and biological Chemistry, Chungbuk National University) ;
  • Yim, Woo-Jong (Department of Agricultural and biological Chemistry, Chungbuk National University) ;
  • Sa, Tong-Min (Department of Agricultural and biological Chemistry, Chungbuk National University)
  • 투고 : 2012.07.18
  • 심사 : 2012.08.16
  • 발행 : 2012.08.31

초록

Heavy metals and metalloids removal can be considered as one of the most important world challenges because of their toxicity and direct impact on human health. Many processes have been introduced but biological processes of remediation seem to offer the most suitable solution in terms of efficiency and low cost. Actinobacteria constitute one of the major microbial populations in soil, and this can be attributed to their adaptive morphological structure as well as their exceptional metabolic power. Among microbes, actinobacteria are morphologic intermediate between fungi and bacteria. Studies on microbial diversities in metal contaminated lands have shown that actinobacteria may constitute a dominantly active microbiota in addition to ${\alpha}$ Proteobacteria. Furthermore, isolation studies have shown metal removal mechanisms which are reminiscent of notable multiresistant strains, such as Cupriavidus metallidurans. Apart from members of genus Streptomyces, which produce more than 90% of commercialized antibiotics, and the nitrogen fixing Frankia, little attention has been given to other members of this phylum. This is because of difficult culture condition requirements and maintenance. In this review, we focused on specific isolation of actinobacteria and their potential applications in metal bioremediation and plant growth promotion.

키워드

참고문헌

  1. Abbas, A. and C. Edward. 1989. Effects of metals on a range of Streptomyces species. Appl. Environ. Microb. 55:2030-2035.
  2. Aldesuquy, H.S., F.A. Mansour, and S.A. Abou-Hamed. 1998. Effect of the culture filtrate of Streptomyces on growth and productivity of wheat plants. Folia Microbiol. 43(5):465-470. https://doi.org/10.1007/BF02820792
  3. Annaliesa, S.A. and E.M.H. Wellington. 2001. The taxonomy of Streptomyces and related genera. Int. J. Syst. Evol. Micr. 51:797-814. https://doi.org/10.1099/00207713-51-3-797
  4. Ara, I., N.A. Bukhari, D.R. Wijayanti, and M.A. Bakir. 2012. Proteolytic activity of alkaliphilic, salt-tolerant actinomycetes from various regions in Saudi Arabia. Afr. J. Biotechnol. 16:3849-3857.
  5. Baskaran, R., R. Vijayakumar, and P.M. Mohan. 2011. Enrichment method for the isolation of bioactive actinomycetes from mangrove sediments of Andaman Islands, India. Malays. J. Microbiol. 7(1):26-32.
  6. Benson, D.R. and W.B. Silvester. 1993. Biology of Frankia strains, Actinomycetes symbionts of actinorhizal plants. Microbiol. Rev. 57:293-319.
  7. Berndt, H., D.J. Lowe, and G.M. Yates. 1978. The nitrogen-fixing system of Corynebacterium autotrophicum. Eur. J. Biochem. 86:133-142. https://doi.org/10.1111/j.1432-1033.1978.tb12292.x
  8. Berdy, J. (2005) Bioactive microbial metabolites. J. Antibiot. 58(1):1-26. https://doi.org/10.1038/ja.2005.1
  9. Biggins, D.R. and J.R. Postgate. 1969. Nitrogen fixation by cultures and cell-free extracts of Mycobacterium flavum 301. J. gen. Microbiol. 56:181-193. https://doi.org/10.1099/00221287-56-2-181
  10. Colin, V.L., B.V. Liliana, and C.M. Abate. 2012. Indigenous microorganisms as potential bioremediators for environments contaminated with heavy metals. Int. Biodeter. Biodegr. 69:28-37. https://doi.org/10.1016/j.ibiod.2011.12.001
  11. Copping, L.G. and S.O. Duke. 2007. Natural products that have been used commercially as crop protection agents. Pest Manag. Sci. 63:524- 554. https://doi.org/10.1002/ps.1378
  12. De Boer, W., S. Gerards, P.J.A. Gunnwiek Klein, and R. Modderman. 1999. Response of the chitinolytic microbial community to chitin amendments of dune soils. Biol. Fertil. Soils. 29:170-177. https://doi.org/10.1007/s003740050541
  13. Doumbou, C.L., M.K. Hamby Salove, D.L. Crawford, and C. Beaulieu. 2001. Actinomycetes, promising tools to control plant diseases and to promote plant growth. Phytoprotection. 82:85-102. https://doi.org/10.7202/706219ar
  14. Duffus, J.H. (2002) Heavy metals_ A meaningless term?. Pure Appl. Chem. 74:793-807. https://doi.org/10.1351/pac200274050793
  15. Eitinger, T. and M.A. Mandrand-Berthelot. 2000. Nickel transport systems in microorganisms. Arch Microbiol. 173:1-9. https://doi.org/10.1007/s002030050001
  16. El-Tarabily, K.A. and S. Krishnapillai. 2006. Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biol. Biochem. 38:1505-1520. https://doi.org/10.1016/j.soilbio.2005.12.017
  17. El-Tarabily, K.A., G.E.S.T. Hardy, K. Sivasithamparam, A.M. Hussein, and D.I. Kurtboke. 1997. The potential for the biological control of cavity-spot disease of carrots, caused by Pythium cloratum, by streptomycete and non-streptomycete actinomycetes. New Phytologist. 137:495-507. https://doi.org/10.1046/j.1469-8137.1997.00856.x
  18. El-Tarabily, K.A., M.H. Soliman, A.H. Nassar, H.A. Al-Hassani, K. Sivasithamparam, F. McKenna, and G.E.S.T Hardy. 2000. Biological control of Sclerotinia minor using a chinolytic bacterium and actinomycetes. Plant Pathol. 49:573-583. https://doi.org/10.1046/j.1365-3059.2000.00494.x
  19. Essoussi, I., F. Ghodhbane-Gtari, H. Amairi, H. Sghaier, A. Jaouani, L. Brusetti, D. Daffonchio, A. Boudabous, and M. Gtari. 2010. Esterase as an enzymatic signature of geodermatophilaceae adaptability to Sahara desert stones and monuments. J. Appl. Microbiol. 108:1723-1732. https://doi.org/10.1111/j.1365-2672.2009.04580.x
  20. Furrer, G., L.P. Brian, U. Kai-Uwe, P. Rosemarie, and H.C. William. 2002. The origin of Aluminium flocs in polluted streams. Science. 297:2245-2247. https://doi.org/10.1126/science.1076505
  21. Gacto, M., J. Vicente-Soler, J. Cansado, and T.G. Villa. 2000. Characterization of an extracellular enzyme system produced by Micromonospora chalcea with lytic activity on yeast cells. J. Appl. Microbiol. 88:961-967. https://doi.org/10.1046/j.1365-2672.2000.01065.x
  22. Ghodhbane-Gtari, F., I. Essoussi, M. Chattaoui, B. Chouaia, A. Jaouani, D. Daffonchio, A. Boudabous, and M. Gtari. 2010. Isolation and characterization of non-Frankia actinobacteria from root nodules of Alnus glutinosa, Casuarina glauca and Elaeagnus angustifolia. Symbiosis. 50:51-57. https://doi.org/10.1007/s13199-009-0029-7
  23. Gremion, F., A. Chatzinotas, and H. Harms. 2003. Comparative 16S rDNA and rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil. Environ. Microbiol. 5(10):896-907. https://doi.org/10.1046/j.1462-2920.2003.00484.x
  24. Gtari, M., L. Brusetti, S. Gharbi, D. Mora, A. Boudabous, and D. Daffonchio. 2004. Isolation of Elaeagnus-compatible Frankia from soils collected in Tunisia. FEMS Microbiol. Lett. 234:349-355. https://doi.org/10.1111/j.1574-6968.2004.tb09554.x
  25. Gtari, M., F. Ghodhbane-Gtari, I. Nouioui, N. Beauchemin, and L.S. Tisa. 2012. Phylogenetic perspectives of nitrogen-fixing actinobacteria. Arch Microbiol. 194:3-11. https://doi.org/10.1007/s00203-011-0733-6
  26. Haferburg, G. and E. Kothe. 2007. Microbes and metals: interactions in the environment. J. Basic Microb. 47:453-467. https://doi.org/10.1002/jobm.200700275
  27. Hamaki, T., M. Suzuki, R. Fudou, Y. Jojima, T. Kajiura, A. Tabuchi, K. Sen, and H. Shibai. 2005. Isolation of Novel Bacteria and Actinomycetes Using Soil-Extract Agar Medium. J. Biosci. Bioeng. 99:485-492. https://doi.org/10.1263/jbb.99.485
  28. Hamdali, H., K. Moursalou, G. Tchangbedji, Y. Ouhdouch, and H. Mohamed. 2012. Isolation and characterization of rock phosphate solubilizing actinobacteria from a Togolese phosphate mine. Afr. J. Biotechnol. 11(2):312-320.
  29. Iwamoto, T. and M. Nasu. 2001. Current bioremediation practice and perspective. Journal of Bioscience and Bioengineering. 92:1-8. https://doi.org/10.1016/S1389-1723(01)80190-0
  30. Karelova, E., J. Harichova, T. Stojnev, D. Pangallo, and P. Ferianc. 2011. The isolation of heavy-metal resistant culturable bacteria and resistance determinants from a heavy-metalcontaminated site. Biologia. 1:18-26.
  31. Lakshmipathy, D. and K. Kannabiran. 2010. Biosurfactant and heavy metal resistance activity of Streptomyces spp. isolated from saltpan soil. British J. Pharmacol. Toxicol. 1(1):33-39.
  32. Machado, M.D., E.V. Soares, and M.V.M. Helena Soares. 2010. Removal of heavy metals using a brewer's yeast strain of Saccharomyces cerevisae: chemical speciation as a tool in the prediction and improving of treatment efficiency of real electroplating effluents. J. Hazard. Mater. 180:347-353. https://doi.org/10.1016/j.jhazmat.2010.04.037
  33. Marta, A.P., A. Maria Julia, and C.M. Abate. 2011. Intracellular chromium accumulation by Streptomyces sp. MC1. Water Air Soil Pollut. 214:49-57. https://doi.org/10.1007/s11270-010-0401-5
  34. Munson, G.P., D.L. Lam, F.W. Outten, and V.O. Thomas. 2000. Identification of a copper-responsive two-component system on the chromosome of Echerchia coli K-12. J. Bacteriol. 182:5864-5871. https://doi.org/10.1128/JB.182.20.5864-5871.2000
  35. Nawani, N.N., B.P. Kapadnis, A.D. Das, A.S. Rao, and S.K. Mahajan. 2002. Purification and characterization of thermophilic and acidophilic chitinase from Microbispora sp. V2. J. Appl. Microbiol. 93:965-975. https://doi.org/10.1046/j.1365-2672.2002.01766.x
  36. Nies, D.H. (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 27:313-339. https://doi.org/10.1016/S0168-6445(03)00048-2
  37. Porter, J.N., J.J. Wilhelm, and H.D. Tresner. 1959. Method for the preferential isolation of Actinomycetes from soils. Appl. Environ. Microbiol. 8:174-178.
  38. Ravel, J., H. Schrempf, and R.T. Hill. 1998. Mercury resistance is encoded by transferable giant linear plasmids in two Chesapeake by Streptomyces strains. Appl. Environ. Microbiol. 64:3383-3388.
  39. Richards, J.W., G.D. Krumholz, M.S. Chval, and L.S. Tisa. 2002. Heavy metal resistance patterns of Frankia strains. Appl. Environ. Microbiol.68:923-927. https://doi.org/10.1128/AEM.68.2.923-927.2002
  40. Sardi, P., M. Saracchi, S. Quaroni, B. Petrolini, G.E. Borgonovi, and S. Merli. 1992. Isolation of endophytic Streptomyces strains from surface-sterilized roots. Appl. Environ. Microbiol. 58:2691-2693.
  41. Schluenzen, F., C. Takemoto, D.N. Wilson, T. Kaminishi, J.M. Harms, K. Hanawa-Suetsugu, W. Szaflarski, M. Kawazoe, M. Shirouzo, K.H. Nierhaus, S. Yokoyama, and P. Fucini. 2006. The antibiotic Kasugamycin mimics mRNA nucleotides to destabilize tRNA binding and inhibit canonical translation initiation. Nat. Struct. Mol. Biol. 13:871-886. https://doi.org/10.1038/nsmb1145
  42. Schmidt, A., G. Haferburg, M. Sineriz, D. Merten, G. Buchel, and E. Kothe. 2005. Heavy metal resistance mechanisms in actinobacteria for survival in AMD contaminated soils. Chem. Erde. Geochem. 65:131-144. https://doi.org/10.1016/j.chemer.2005.06.006
  43. Shayne, J.J., P. Hugenholtz, P. Sangwan, C.A. Osborne, and P.H. Janssen. 2003. Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl. Environ. Microbiol. 69:7210-7215. https://doi.org/10.1128/AEM.69.12.7210-7215.2003
  44. Sineriz, M.L., E. Kothe, and C.M. Abate. 2009. Cadmium biosorption by Streptomyces sp. F4 isolated from former uranium mine. J. Basic Microbiol. 49:55-62. https://doi.org/10.1002/jobm.200700376
  45. Solans, M. (2007) Discaria trinervis-Frankia symbiosis promotion by saprophytic actinomycetes. J. Basic Microbiol. 47:243-250. https://doi.org/10.1002/jobm.200610244
  46. Srinath, T., T. Verma, P.W. Ramteke, and S.K. Garg. 2002. Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere. 48:427-435. https://doi.org/10.1016/S0045-6535(02)00089-9
  47. Stackebrandt, E. and P. Schumann. 2006. Introduction to the taxonomy of actinobacteria. In: Prokaryotes. 3:297-321.
  48. Stackebrandt, E., F.A. Rainey, and N.L. Ward-Rainey. 1997a. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int. J. Syst. Bacteriol. 47:479-491. https://doi.org/10.1099/00207713-47-2-479
  49. Stackebrandt, E., C. Sproer, F.A. Rainey, J. Burghardt, O. Pauker, and H. Hans. 1997b. Phylogenetic analysis of the genus Desulfotomaculum: Evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfotosporosinus gen. nov., comb. nov. Int. J. Syst. Bacteriol. 47:1134-1139. https://doi.org/10.1099/00207713-47-4-1134
  50. Tipayno, S., C.G. Kim, and T. Sa. 2012. T-RFLP analysis of structural changes in soil bacterial communities in response to metal and metalloid contamination and initial phytoremediation. Appl. Soil Ecol. 61:137-146. https://doi.org/10.1016/j.apsoil.2012.06.001
  51. Valls, M. and D.V. Lorenzo. 2002. Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol. Rev. 26:327-338. https://doi.org/10.1111/j.1574-6976.2002.tb00618.x
  52. Ventura, M., C. Canchaya, A. Tauch, G. Chandra, G.F. Fitzgerald, K.F. Chater, and D.V. Sinderen. 2007. Genomics of Actinobacteria: Tracing the evolutionary history of an ancient phylum. Microbiol. Mol. Biol. Rev. 71:495-548. https://doi.org/10.1128/MMBR.00005-07
  53. Williams, S.T. and F.L. Davies. 1965. Use of antibiotics for selective isolation and enumeration of Actinomycetes in soil. J. Gen. Microbiol. 38:251-261. https://doi.org/10.1099/00221287-38-2-251
  54. Williams, S.T., M. Goodfellow, G. Alderson, E.H.H. Wellington, P.H.A. Sneath, and M.J. Sackin. 1983. Numerical classification of streptomyces and related genera. J. Gen. Microbiol. 129:1743-1813.
  55. Wink, J., M.R. Kroppenstedt, G. Seibert, and E. Stackebrandt. 2003. Actinomadura namibiensis sp. nov. Int. J. Syst. Evol. Microbiol. 53:721-724. https://doi.org/10.1099/ijs.0.02286-0
  56. Zhang, H., Y. Kyung Lee, W. Zhang, and H. Kum Lee. 2006. Culturable actinobacteria from the marine sponge Hymeniacidon perleve: isolation and phylogenetic diversity by 16S rRNA gene-RFLP analysis. Antonie van Leeuwenhoek. 90: 159-169. https://doi.org/10.1007/s10482-006-9070-1

피인용 문헌

  1. The Response of a 16S Ribosomal RNA Gene Fragment Amplified Community to Lead, Zinc, and Copper Pollution in a Shanghai Field Trial vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.00366