Browse > Article
http://dx.doi.org/10.4014/kjmb.1110.10007

Effects on the Soil Microbial Diversity and Growth of Red Pepper by Treated Microbial Agent in the Red Pepper Field  

An, Chang-Hwan (Department of Applied Microbiology & Biotechnology, Yeungnam University)
Lim, Jong-Hui (Department of Applied Microbiology & Biotechnology, Yeungnam University)
Kim, Yo-Hwan (Department of Applied Microbiology & Biotechnology, Yeungnam University)
Jung, Byung-Kwon (Department of Applied Microbiology & Biotechnology, Yeungnam University)
Kim, Jin-Won (Yecheon Agricultural Technology Center)
Kim, Sang-Dal (Department of Applied Microbiology & Biotechnology, Yeungnam University)
Publication Information
Microbiology and Biotechnology Letters / v.40, no.1, 2012 , pp. 30-38 More about this Journal
Abstract
We investigated the effects on soil microbial diversity and the growth promotion of red pepper resulting from inoculation with a microbial agent composed of Bacillus subtilis AH18, B. licheniformis K11 and Pseudomonas fluorescens 2112 in a red pepper farming field. Photosynthetic bacteria, Trichoderma spp., Azotobacter spp., Actinomycetes, nitrate oxidizing bacteria, nitrite oxidizing bacteria, nitrogen fixing bacteria, denitrifying bacteria, phosphate solubilizing bacteria, cellulase producing bacteria, and urease producing bacteria are all indicator microbes of healthy soil microbial diversity. The microbial diversity of the consortium microbial agent treated soil was seen to be 1.1 to 14 times greater than soils where other commercial agent treatments were used, the latter being the commercial agent AC-1, and chemical fertilizer. The yield of red pepper in the field with the treated consortium microbial agent was increased by more than 15% when compared to the other treatments. Overall, the microbial diversity of the red pepper farming field soil was improved by the consortium microbial agent, and the promotion of growth and subsequent yield of red pepper was higher than soils where the other treatments were utilized.
Keywords
Microbial diversity; plant growth promoting rhizobacteria (PGPR); microbial agent; soil indicator;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Katsuji, W. and K. Nobuhisa. 2009, Use of a microchip electrophoresis system for estimation of bacteria phylogeny and analtsis of ${NO_3}^-$ reducing bacterial flora in field soils. Biosci. Biotechnol. Biochem. 73: 479-488.
2 Kim, S. H., K. S. Bae, J. K. Yang, Y. J. Lee, J. S. Oh, S. J. Jung, B. J. Moon, and J. W. Lee. 2004. Effect of microbial product made of Bacillus stearothermophilus DL-3 on microorganisms in soil and growth of lettuce and chinese cabbage. J. Life Science 14: 778-787.
3 Kwon, Y. T. 2008. Capsicum annuum manual. Yeongyanggun Agriculture Extension center
4 Lee, E. T. and S. D. Kim. 1999. Selection and antifungal activity of antagonistic bacterium Pseudomonas sp. 2112 against red-pepper rotting Phytophthora capsici. Kor. J. Appl. Microbiol. Biotechn. 28: 334-340.
5 Lee, H. Y. 2004. Optimization of environmental parameters for extracellular chitinase production by Trichoderma hazianum SJG-99721 in bioreactor. Kor. J. Environ. Biol. 22: 167-170.
6 Lee, S. J., S. E. Lee, K. J. Seul, S. H. Park, and S. Y. Ghim. 2006. Plant growth-promoting capabilities of diazotrophs from wild Gramineous crops. Korean J. Microbiol. Biotechnol. 34: 78-82.
7 Lee, S. H., W. S. Kim, K. Y. Kim, T. H. Kim, H. Whangbo, W. J. Jung, and S. J. Chung. 2003. Effect of chitin compost incorporated with chitinolytic bacteria and rice bran on chemical properties and microbial comuunity in pear orchard soil. J. Kor. Soc. Hort. 44: 201-206.
8 Lee, Y. H., H. T. Jeong, H. D. Yun. 2008. Effects of Rhodobacter sp. SA16 on lettuce (Lactuca sativa L.) in plastic film house. Kor. J. Environ. Agric. 27: 163-170.
9 Lee, Y. H. and S. T. Lee. 2011. Comparison of microbial community of orchard soils in gyeongnam province. Kor. J. Soil. Sci. Fert. 44: 492-497.
10 Lim, J. H., J. G. Kim, and S. D. Kim. 2008. Selection of the auxin and ACC deaminase producing plant growth promoting rhizobacteria from the coastal sand dune plants. Korean J. Microbiol. Biotechnol. 36: 268-275.
11 Lim, J. H. and S. D. Kim. 2010. Biocontrol of phytophthora blight of red pepper caused by Phytophthora capsici using Bacillus subtilis AH18 and B. licheniformis K11 formulation. Kor. J. Soc. Appl. Biol. Chem. 53: 766-773.
12 Munnecke, D. M., L. M. John. H. W. Talbot, and S. Barik. 1982. Microbial metabolism and enzymology of selected pesricides, in A. M. Chakrabarty (ed.) Biodegradation and Detoxication oF Environmental Pollutants, CRC press, Boca Raton, FL: 1-32.
13 Park, K. C., T. R. Kwon, K. S. Jang, and Y. S. Kim. 2008. Short-term effects of cultivars and compost on soil microbial activities and diversities in red pepper field. Kor. J. Environ. Agric. 27: 139-144.
14 Park, K. C., J. H. Lim, Y. K. Yi, and S. D. Kim. 2009. Effecs of phytophthora blicht-antagonistic microorganisms Bacillus subtilis AH18 and Bacillus licheniformis K11 on the soil microbial community. J. Appl. Biol. Chem. 52: 121-125.
15 Beguin, P. and J. P. Aubert. 1994. The biological degradation of cellulose. FEMS Microbiol. Rev. 13: 25-58.
16 Samuels, G. J. 1996. Trichoderma: a review of biology and systematic of the genus. Mycol. Res. 100: 923-935.
17 Anderson, I. C. and J. S. Levine. 1986. Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers. Appl. Environ. Microbiol. 51: 938-945.
18 Barbara, R. H. and H. Thomas. 1997. Azoarcus spp. and their interactions with grass roots. Plant and Soil. 194: 57-64.
19 Brown, M. E., S. K. Burlingham, and R. M. Jackson. 1962. Studies on Azotobacter species in soil. I. Comparison of media and gechniques for counting Azotobacter in soil. Plant Soil 17: 309-319.
20 Cao, L. X., Z. Q. Qiu, J. L. You, H. M. Tan, and S. Zhou. 2004. Isolation and characterization of endophytic Streptomyces antagonists of Fusarium wilt pathogen from surface sterilized banana roots. FEMS Microbiol. 247: 147-152.
21 Cheng, H. H. 1990. Pesticides in the soil environment; precesses, impacts and medeling. Soil Science Society of America. pp. 429-466.
22 Choi, E. H., S. E. Lee, K. S. Yoon, D. K. Kwon, J. K. Sohn, S. H. Park, M. S. Han, and S. Y. Ghim. 2003. Isolation of nitrogen-fixing bacteria from gramineous crops and measurement of nitrogenase activity. Korean J. Microbiol. Biotechnol. 31: 18-24.
23 Choi, J. K., and S. D. Kim. 1998. Improvement in antagonistic ablility of antagonistic bacterium Bacillus sp. SH14 by transfer of the urease gene. Kor. J. Appl. Microbiol. Biotechnol. 26: 122-129.
24 Gamble, T. N., M. R. Betlach, and J. M. Tiedje. 1977. Numerically dominant denitrifying bacteria from world soils. Appl. Environ. Microbiol. 33: 926-939.
25 Jung, H. Y., J. H. Lim, B. K. Kim, J. J. Lee, and S. D. Kim. 2010. Selection and mechanisms of indigenous antagonistic microorganisms against sheath rot and dry rot disease of garlic. Korean J. Microbiol. Biotechnol. 38: 295-301.
26 John, W. D. and Michael R. Z. 2000. Soil health and sustainability: managing the biotic component of soil quality. Appl. Soil Ecology 15: 3-11.
27 Jung, H. K., J. R. Kim, S. M. Woo, and S. D. Kim. 2006a. An auxin producing plant growth promoting rhizobacterium Bacillus subtilis AH18 which has siderophore-producing biocontrol activity. Korean J. Microbiol. Biotechenol. 34: 94-100.
28 Jung, H. K., J. R. Kim, S. M. Woo, and S. D. Kim. 2006b. Selection of the auxin, siderophore, and cellulase-producing PGPR, Bacillus licheniformis K11 and its plant growth promoting mechanism. J. Kor. Soc. Appl. Biol. Chem. 50: 23-28.
29 Sharma, S. K., A. Ramesh, M. P. Sharma, O. P. Joshi, B. Govaerts, K. L. Steenwerth, and D. L. Karlen. 2011. Microbial community structure and diversity as indicators for evaluating soil quaity. Sustainable Agriculture Reviews. 5: 317-358.
30 Suh, J. S. and J. S. Shin. 1997. soil microbial diversity of paddy fields in Korea. Kor. J. Soil. Fert. 30: 200-207.
31 Suh, J. S., J. S. Kwon, and H. J. Noh. 2010. Effect of the long-term application of organic matters on microbial diversity in upland soils. Kor. J. Soil. Sci. Fert 43: 987-994.
32 Tate, R. L. 1995. Soil microbiology. Energy Transformations and Metabolic Activities of Soil Microbes. John Wiley & Sons Inc. p64-92. USA.
33 Teather, R. M., and P. J. Wood. 1982. Use of congo redpolysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Envion. Microbiol. 43: 777-780.
34 Yang, J. C., H. K. Jung, H. S. Lee, S. J. Choi, S. S. Yun, K. S. Ahn, and T. M. Sa. 2004. Selection of filamentous cyanobacteria and optimization of culture condition for recycling waste nutrient solution. Kor. J. Soil. Sci. Fert. 37: 177-183.
35 Vyas, P., P. Rahi, A. Chauhan, and A. Gulati. 2007. Phosphate solubilization potential and stress tolerance of Eupenicillium parvum from tea soil. Microbiol. Res. 167: 931-938.
36 Woo, S. M. and S. D. Kim. 2007. Confirmation of non-siderophore antifungal substance and cellulase from Bacillus licheniformis K11 containing antagonistic ability and plant growth promoting activity. J. Life Sci. 17: 983-988.