DOI QR코드

DOI QR Code

Arsenic Detoxification by As(III)-Oxidizing Bacteria: A Proposition for Sustainable Environmental Management

  • Received : 2022.12.09
  • Accepted : 2023.01.23
  • Published : 2023.03.28

Abstract

Arsenic (As), which is ubiquitous throughout the environment, represents a major environmental threat at higher concentration and poses a global public health concern in certain geographic areas. Most of the conventional arsenic remediation techniques that are currently in use have certain limitations. This situation necessitates a potential remediation strategy, and in this regard bioremediation technology is increasingly important. Being the oldest representativse of life on Earth, microbes have developed various strategies to cope with hostile environments containing different toxic metals or metalloids including As. Such conditions prompted the evolution of numerous genetic systems that have enabled many microbes to utilize this metalloid in their metabolic activities. Therefore, within a certain scope bacterial isolates could be helpful for sustainable management of As-contamination. Research interest in microbial As(III) oxidation has increased recently, as oxidation of As(III) to less hazardous As(V) is viewed as a strategy to ameliorate its adverse impact. In this review, the novelty of As(III) oxidation is highlighted and the implication of As(III)-oxidizing microbes in environmental management and their prospects are also discussed. Moreover, future exploitation of As(III)-oxidizing bacteria, as potential plant growth-promoting bacteria, may add agronomic importance to their widespread utilization in managing soil quality and yield output of major field crops, in addition to reducing As accumulation and toxicity in crops.

Keywords

References

  1. Evans J, Geerken R. 2004. Discrimination between climate and human-induced dryland degradation. J. Arid Environ. 57: 535-554.  https://doi.org/10.1016/S0140-1963(03)00121-6
  2. Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ. 2011. Arsenic exposure and toxicology: a historical perspective. Toxicol. Sci. 123: 305-332.  https://doi.org/10.1093/toxsci/kfr184
  3. Acharya SK. 2005. Arsenic levels in groundwater from quaternary alluvium in Ganga plain and the Bengal basin, Indian subcontinent: Insights into influences of stratigraphy. Gondwana Res. 8: 55-66.  https://doi.org/10.1016/S1342-937X(05)70262-8
  4. Kumar M, Rahman MM, Ramanathan AL, Naidu R. 2016. Arsenic and other elements in drinking water and dietary components from the middle Gangetic plain of Bihar, India: health risk index. Sci. Total Environ. 539: 125-134.  https://doi.org/10.1016/j.scitotenv.2015.08.039
  5. Bahar MM, Megharaj M, Naidu R. 2013. Bioremediation of arsenic-contaminated water: recent advances and future prospects. Water Air Soil Pollut. 224: 1722. 
  6. Cullen WR, Reimer KJ. 1989. Arsenic speciation in the environment. Chem. Rev. 89: 713-764.  https://doi.org/10.1021/cr00094a002
  7. Paul T, Mukherjee SK. 2018. Exploration and intervention of geologically ancient microbial adaptation in the contemporary environmental arsenic bioremediation. Heavy Metals in the Environment: Microorganisms and Bioremediation. CRC Press, Boca Raton. pp. 73-90. 
  8. Choong TS, Chuah TG, Robiah Y, Koay FG, Azni I. 2007. Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination 217: 139-166.  https://doi.org/10.1016/j.desal.2007.01.015
  9. Mondal P, Majumder CB, Mohanty B. 2006. Laboratory based approaches for arsenic remediation from contaminated water: recent developments. J. Hazard. Mater. 137: 464-479.  https://doi.org/10.1016/j.jhazmat.2006.02.023
  10. Pulford ID, Watson C. 2003. Phytoremediation of heavy metal-contaminated land by trees - a review. Environ. Int. 29: 529-540.  https://doi.org/10.1016/S0160-4120(02)00152-6
  11. Mulligan CN, Yong RN, Gibbs BF. 2001. Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng. Geol. 60: 193-207.  https://doi.org/10.1016/S0013-7952(00)00101-0
  12. Mukhopadhyay R, Rosen BP, Phung LT, Silver S. 2002. Microbial arsenic: From geocycles to genes and enzymes. FEMS Microbiol. Rev. 26: 311-325.  https://doi.org/10.1111/j.1574-6976.2002.tb00617.x
  13. Mateos LM, Ordonez E, Letek M, Gil JA. 2006. Corynebacterium glutamicum as a model bacterium for the bioremediation of arsenic. Int. Microbiol. 9: 207-215. 
  14. Oremland RS, Stolz JF. 2003. The ecology of arsenic. Science 300: 939-944.  https://doi.org/10.1126/science.1081903
  15. Hohmann C, Winkler E, Morin G, Kappler A. 2010. Anaerobic Fe(II)-oxidizing bacteria show As resistance and immobilize As during Fe(III) mineral precipitation. Environ. Sci. Technol. 44: 94-101.  https://doi.org/10.1021/es900708s
  16. Say R, Yilmaz N, Denizli, A. 2003. Biosorption of cadmium, lead, mercury, and arsenic ions by the fungus Penicillium purpurogenum. Separ. Sci. Technol. 38: 2038-2053.  https://doi.org/10.1081/SS-120020133
  17. Geesey GG, Jang L, Jolley JG, Hankins MR, Iwaoka T, Griffiths PR. 1988. Binding of metal ions by extracellular polymers of biofilm bacteria. Water Sci. Technol. 20: 161-165.  https://doi.org/10.2166/wst.1988.0279
  18. Gadd GM. 1993. Microbial formation and transformation of organometallic and organometalloid compounds. FEMS Microbiol. Rev. 11: 297-316.  https://doi.org/10.1111/j.1574-6976.1993.tb00003.x
  19. Bentley R, Chasteen TG. 2002. Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol. Mol. Biol. Rev. 66: 250-271.  https://doi.org/10.1128/MMBR.66.2.250-271.2002
  20. Qin J, Rosen BP, Zhang Y, Wang GJ, Franke S, Rensing C. 2006. Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc. Natl. Acad. Sci. USA 103: 2075-2080.  https://doi.org/10.1073/pnas.0506836103
  21. Qin J, Lehr CR, Yuan C, Le XC, Mcdermott TR, Rosen BP. 2009. Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga. Proc. Natl. Acad. Sci. USA 106: 5213-5217.  https://doi.org/10.1073/pnas.0900238106
  22. Chen J, Sun GX, Wang XX, de Lorenzo V, Rosen BP, Zhu YG. 2014. Volatilization of arsenic from polluted soil by Pseudomonas putida engineered for expression of the arsM arsenic(III) S-adenosine methyltransferase gene. Environ. Sci. Technol. 48: 10337-10344.  https://doi.org/10.1021/es502230b
  23. Silver S, Phung LT. 2005. Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl. Environ. Microbiol. 71: 599-608.  https://doi.org/10.1128/AEM.71.2.599-608.2005
  24. Shi K, Dai X, Fan X, Zhang Y, Chen Z, Wang G. 2020. Simultaneous removal of chromate and arsenite by the immobilized Enterobacter bacterium in combination with chemical reagents. Chemosphere 259: 127428. 
  25. Paez-Espino D, Tamames J, de Lorenzo V, Canovas D. 2009. Microbial responses to environmental arsenic. Biometals 22: 117-130.  https://doi.org/10.1007/s10534-008-9195-y
  26. Mazumder P, Sharma SK, Taki K, Kalamdhad AS, Kumar M. 2020. Microbes involved in arsenic mobilization and respiration: a review on isolation, identification, isolates and implications. Environ. Geochem. Health 42: 3443-3469.  https://doi.org/10.1007/s10653-020-00549-8
  27. Green HH. 1918. Description of a bacterium which oxidizes arsenite to arsenate, and of one which reduces arsenate to arsenite, isolated from a cattle-dipping tank. S. Afr. J. Sci. 14: 465-467. 
  28. Salmassi TM, Venkateswaren K, Satomi M, Newman DK, Hering JG. 2002. Oxidation of arsenite by Agrobacterium albertimagni AOL15, sp. nov., isolated from Hot Creek, California. Geomicrobiol. J. 19: 53-66.  https://doi.org/10.1080/014904502317246165
  29. Yin S, Zhang X, Yin H, Zhang X. 2022. Current knowledge on molecular mechanisms of microorganism-mediated bioremediation for arsenic contamination: A review. Microbiol. Res. 258: 126990. 
  30. Cai L, Liu G, Rensing C, Wang G. 2009. Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils. BMC Microbiol. 9: 4. 
  31. Ehrlich L. 2001. Bacterial oxidation of As (III) compounds In: Environmental Chemistry of Arsenic. Frankenberger Jr WT, editor. New York: Marcel Dekker; pp. 313-328. 
  32. Satyapal GK, Kumar R, Kumar S, Singh RS, Prashant, Ranjan RK, et al. 2023. Cloning and functional characterization of arsenite oxidase (aoxB) gene associated with arsenic transformation in Pseudomonas sp. strain AK9. Gene 850: 146926. 
  33. Li X, Li J, Zhao Q, Qiao L, Wang L, Yu C. 2023. Physiological, biochemical, and genomic elucidation of the Ensifer adhaerens M8 strain with simultaneous arsenic oxidation and chromium reduction. J. Hazard. Mater. 441: 129862. 
  34. Li Y, Guo L, Yang R, Yang Z, Zhang H, Li Q, et al. 2023. Thiobacillus spp. and Anaeromyxobacter spp. mediate arsenite oxidation-dependent biological nitrogen fixation in two contrasting types of arsenic-contaminated soils. J. Hazard. Mater. 443: 130220. 
  35. Anand V, Kaur J, Srivastava S, Bist V, Dharmesh V, Kriti K, et al. 2023. Potential of methyltransferase containing Pseudomonas oleovorans for abatement of arsenic toxicity in rice. Sci. Total Environ. 856: 158944. 
  36. Biswas R, Vivekanand V, Saha A, Ghosh A, Sarkar A. 2019. Arsenite oxidation by a facultative chemolithotrophic Delftia spp. BAs29 for its potential application in groundwater arsenic bioremediation. Int. Biodeter. Biodegr. 136: 55-62.  https://doi.org/10.1016/j.ibiod.2018.10.006
  37. Kumari N, Rana A, Jagadevan S. 2019. Arsenite biotransformation by Rhodococcus sp.: Characterization, optimization using response surface methodology and mechanistic studies. Sci. Total Environ. 687: 577-589.  https://doi.org/10.1016/j.scitotenv.2019.06.077
  38. Fan X, Nie L, Shi K, Wang Q, Xia X, Wang G. 2019. Simultaneous 3-/4-hydroxybenzoates biodegradation and arsenite oxidation by Hydrogenophaga sp. H7. Front. Microbiol. 10: 1346. 
  39. Lu X, Zhang Y, Liu C, Wu M, Wang H. 2018. Characterization of the antimonite-and arsenite-oxidizing bacterium Bosea sp. AS-1 and its potential application in arsenic removal. J. Hazard. Mat. 359: 527-534.  https://doi.org/10.1016/j.jhazmat.2018.07.112
  40. Paul T, Chakraborty A, Islam E, Samir Kumar Mukherjee SK. 2018. Arsenic bioremediation potential of arsenite-oxidizing Micrococcus sp. KUMAs15 isolated from contaminated soil. Pedosphere 28: 299-310.  https://doi.org/10.1016/S1002-0160(17)60493-4
  41. Biswas R, Sarkar A. 2018. Characterization of arsenite oxidizing bacteria to decipher their role in arsenic bioremediation. Prep. Biochem. Biotechnol. 49: 30-37.  https://doi.org/10.1080/10826068.2018.1476883
  42. Anguita JM, Rojas C, Pasten PA, Vargas IT. 2018. A new aerobic chemolithoautotrophic arsenic oxidizing microorganism isolated from a high Andean watershed. Biodegradation 29: 59-69.  https://doi.org/10.1007/s10532-017-9813-x
  43. Roychowdhury R, Roy M, Rakshit A, Sarkar S, Mukherjee P. 2018. Arsenic bioremediation by indigenous heavy metal resistant bacteria of fly ash pond. Bull. Environ. Contam. Toxicol. 101: 527-535.  https://doi.org/10.1007/s00128-018-2428-z
  44. Tapase SR, Kodam KM. 2018. Assessment of arsenic oxidation potential of Microvirga indica S-MI1b sp. nov. in heavy metal polluted environment. Chemosphere 195: 1-10.  https://doi.org/10.1016/j.chemosphere.2017.12.022
  45. Kamde K, Pandey RA, Thul S, Dahake R, Shinde VM, Bansiwal A. 2018. Microbially assisted arsenic removal using Acidothiobacillus ferrooxidans mediated by iron oxidation. Environ. Technol. Innov. 10: 78-90.  https://doi.org/10.1016/j.eti.2018.01.010
  46. Nguyen VK, Choi W, Yu J, Lee T. 2017. Microbial oxidation of antimonite and arsenite by bacteria isolated fromantimony-contaminated soils. Int. J. Hydrog. Energy 42: 27832-27842.  https://doi.org/10.1016/j.ijhydene.2017.08.056
  47. Yang Z, Wu Z, Liao Y, Liao Q, Yang W, Chai L. 2017. Combination of microbial oxidation and biogenic schwertmannite immobilization: a potential remediation for highly arsenic-contaminated soil. Chemosphere 181: 1-8.  https://doi.org/10.1016/j.chemosphere.2017.04.041
  48. Zhang Z, Yin N, Cai X, Wang Z, Cui Y. 2016. Arsenic redox transformation by Pseudomonas sp. HN-2 isolated from arsenic-contaminated soil in Hunan, China. J. Environ. Sci. 47: 165-173.  https://doi.org/10.1016/j.jes.2015.11.036
  49. Ghosh P, Rathinasabapathi B, Teplitski M, Ma LQ. 2015. Bacterial ability in As(III) oxidation and As(V) reduction: relation to arsenic tolerance, P uptake, and siderophore production. Chemosphere. 138: 995-1000.  https://doi.org/10.1016/j.chemosphere.2014.12.046
  50. Corsini A, Zaccheo P, Muyzer G, Andreoni V, Cavalca L. 2014. Arsenic transforming abilities of groundwater bacteria and the combined use of Aliihoeflea sp. strain 2WW and goethite in metalloid removal. J. Hazard. Mater. 269: 89-97.  https://doi.org/10.1016/j.jhazmat.2013.12.037
  51. Duan M, Wang Y, Xie X, Su C, Li J. 2013. Arsenite oxidizing bacterium isolated from high arsenic groundwater aquifers from Datong Basin, Northern China. Procedia Earth Planet Sci. 7: 232-235.  https://doi.org/10.1016/j.proeps.2013.03.061
  52. Muller D, Simeonova DD, Riegel P, Mangenot S, Koechler S, Lievremont D, et al. 2006. Herminiimonas arsenicoxydans sp. nov., a metalloresistant bacterium. Int. J. Syst. Evol. Microbiol. 56: 1765-1769.  https://doi.org/10.1099/ijs.0.64308-0
  53. Kashyap DR, Botero LM, Franck WL, Hassett DJ, McDermott TR. 2006. Complex regulation of arsenite oxidation in Agrobacterium tumefaciens. J. Bacteriol. 188: 1081-1088.  https://doi.org/10.1128/JB.188.3.1081-1088.2006
  54. Mokashi SA, Paknikar KM. 2002. Arsenic (III) oxidizing Microbacterium lacticum and its use in the treatment of arsenic contaminated groundwater. Lett. Appl. Microbiol. 34: 258-262.  https://doi.org/10.1046/j.1472-765x.2002.01083.x
  55. Gihring TM, Banfield JF. 2001. Arsenite oxidation and arsenate respiration by a new Thermus isolate. FEMS Microbiol. Lett. 204: 335-340.  https://doi.org/10.1111/j.1574-6968.2001.tb10907.x
  56. Langner HW, Jackson CR, McDermott TR, Inskeep WP. 2001. Rapid oxidation of arsenite in a hot spring ecosystem Yellowstone national park. Environ. Sci. Technol. 35: 3302-3309.  https://doi.org/10.1021/es0105562
  57. Santini JM, Sly LI, Schnagl RD, Macy JM. 2000. A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Appl. Environ. Microbiol. 66: 92-97.  https://doi.org/10.1128/AEM.66.1.92-97.2000
  58. Kulp TR, Hoeft SE, Asao M, Madigan MT, Hollibaugh JT, Fisher JC, et al. 2008. Arsenic(III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono lake, California. Science 321: 967-970.  https://doi.org/10.1126/science.1160799
  59. Yan G, Chen X, Du S, Deng Z, Wang L, Chen S. 2019. Genetic mechanisms of arsenic detoxification and metabolism in bacteria. Curr. Genet. 65: 329-338.  https://doi.org/10.1007/s00294-018-0894-9
  60. Anderson GL, Williams J, Hille R. 1992. The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum-containing hydroxylase. J. Biol. Chem. 267: 23674-23682.  https://doi.org/10.1016/S0021-9258(18)35891-5
  61. Warelow TP, Pushie MJ, Cotelesage JJ, Santini JM, George GN. 2017. The active site structure and catalytic mechanism of arsenite oxidase. Sci. Rep. 7: 1757. 
  62. Santini JM, Stolz JF, Macy JM. 2002. Isolation of a new arsenaterespiring bacterium-physiological and phylogenetic studies. Geomicrobiol. J. 19: 41-52.  https://doi.org/10.1080/014904502317246156
  63. Yamamura S, Amachi S. 2014. Microbiology of inorganic arsenic: from metabolism to bioremediation. J. Biosci. Bioeng. 118: 1-9.  https://doi.org/10.1016/j.jbiosc.2013.12.011
  64. Ellis PJ, Conrads T, Hille R, Kuhn P. 2001. Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 A and 2.03 A. Struct. 9: 125-132.  https://doi.org/10.1016/S0969-2126(01)00566-4
  65. Wang Q, Warelow TP, Kang YS, Romano C, Osborne TH, Lehr CR, et al. 2015. Arsenite oxidase also functions as an antimonite oxidase. Appl. Environ. Microbiol. 81: 1959-1965.  https://doi.org/10.1128/AEM.02981-14
  66. Zargar K, Hoeft S, Oremland R, Saltikov CW. 2010. Identification of a novel arsenite oxidase gene, arxA, in the haloalkaliphilic, arsenite-oxidizing bacterium Alkalilimnicola ehrlichii strain MLHE-1. J. Bacteriol. 192: 3755-3762.  https://doi.org/10.1128/JB.00244-10
  67. Zargar K, Conrad A, Bernick DL, Lowe TM, Stolc V, Hoeft S, et al. 2012. ArxA, a new clade of arsenite oxidase within the DMSO reductase family of molybdenum oxidoreductases. Environ. Microbiol. 14: 1635-1645.  https://doi.org/10.1111/j.1462-2920.2012.02722.x
  68. Ospino MC, Kojima H, Fukui M. 2019. Arsenite oxidation by a newly isolated betaproteobacterium possessing arx genes and diversity of the arx gene cluster in bacterial genomes. Front. Microbiol. 10: 1210. 
  69. Chen J, Bhattacharjee H, Rosen BP. 2015. ArsH is an organoarsenical oxidase that confers resistance to trivalent forms of the herbicide monosodium methylarsenate and the poultry growth promoter roxarsone. Mol. Microbiol. 96: 1042-1052.  https://doi.org/10.1111/mmi.12988
  70. Shi K, Wang Q, Fan X, Wang G. 2018. Proteomics and genetic analyses reveal the effects of arsenite oxidation on metabolic pathways and the roles of AioR in Agrobacterium tumefaciens GW4. Environ. Pollut. 235: 700-709.  https://doi.org/10.1016/j.envpol.2018.01.006
  71. Mu M, Zhao H, Wang Y, Liu J, Fei D, Xing M. 2019. Arsenic trioxide or/and copper sulfate co-exposure induce glandular stomach of chicken injury via destruction of the mitochondrial dynamics and activation of apoptosis as well as autophagy. Ecotoxicol. Environ. Saf. 185: 109678. 
  72. Marinho BA, Cristovao RO, Boaventura RA, Vilar VJ. 2019. As(III) and Cr(VI) oxyanion removal from water by advanced oxidation/reduction processes - a review. Environ. Sci. Pollut. Res. Int. 26: 2203-2227.  https://doi.org/10.1007/s11356-018-3595-5
  73. Debiec-Andrzejewska K, Krucon T, Piatkowska K, Drewniak L. 2020. Enhancing the plants growth and arsenic uptake from soil using arsenite oxidizing bacteria. Environ. Pollut. 264: 114692. 
  74. Karn SK, Pan X, Jenkinson IR. 2017. Bio-transformation and stabilization of arsenic (As) in contaminated soil using arsenic oxidizing bacteria and FeCl3 amendment. 3Biotech. 7: 50. 
  75. Yang Z, Wu Z, Liao Y, Liao Q, Yang W, Chai L. 2017. Combination of microbial oxidation and biogenic schwertmannite immobilization: a potential remediation for highly arsenic-contaminated soil. Chemosphere 181: 1-8.  https://doi.org/10.1016/j.chemosphere.2017.04.041
  76. Aw X, Z L, Wc L, Zh Y. 2020. The effect of plant growth-promoting rhizobacteria (PGPR) on arsenic accumulation and the growth of rice plants (Oryza sativa L.). Chemosphere 242: 125136.