Browse > Article

An Auxin Producing Plant Growth Promoting Rhizobacterium Bacillus subtilis AH18 which has Siderophore-Producing Biocontrol Activity  

Jung Hee-Kyoung (Department of Applied Microbiology, College of Natural Resources, Yeungnam University)
Kim Jin-Rak (Department of Applied Microbiology, College of Natural Resources, Yeungnam University)
Woo Sang-Min (Department of Applied Microbiology, College of Natural Resources, Yeungnam University)
Kim Sang-Dal (Department of Applied Microbiology, College of Natural Resources, Yeungnam University)
Publication Information
Microbiology and Biotechnology Letters / v.34, no.2, 2006 , pp. 94-100 More about this Journal
Abstract
To isolate a bacterium that produces plant growth promoting hormone, a total of 29 bacteria were obtained from the soil in Gyeongsan, Korea. Among these, 14 strains were selected by their positive reaction on Salkowski to produce auxin. All of these were then tested for their property to produce siderophore using CAS (chrome azurol S) blue agar, and one was chosen for its ability to produce both, auxin and siderophore. This strain, denoted, AHl8, showed 1.5 times higher adventitious root induction rates than controls, using mung-beans. The strain also showed efficient biocontrol properties towards Fusarium-wilt of tomatoes in artificial pot assays. The strain was identified as Bacillus subtilis by 16s rDNA comparison and Biolog analyses. Growth and media conditions for Bacillus subtilis AH1 8 to highly produce siderophore were also investigated.
Keywords
Biocontrol; siderophore; auxin; Fusarium oxysporum; Bacillus subtilis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 9
연도 인용수 순위
1 Hess, C. E. 1961. The mungbean bioassay for the detection of root promoting substances. Plant Physiol. (suppl.) 36: xxi
2 Kwon, D. H., J. H. Choe, H. K. Jeong, J. H. Im, G. J. Ju and S. D. Kim. 2004. Selection and identification of auxinproducing plant growth promoting rhizobacteria having phytopathogenantagonistic activity. J. Kor. Soc. Appl. Biol. Chem. 47: 17-21
3 Lee, J. M., H. S. Lim, T. H. Chang and S. D. Kim. 1999. Isolation of siderophore-producing Pseudomonas fluorescens GL 7 and its biocontrol activity against root-rot disease. Kor. J. Appl. Microbiol. Biotechnol. 27: 427-432   과학기술학회마을
4 Leonid, N. T., M. J. Lee, M. K. Lee, H. Park and J. H. Yoon. 2000. Production of Auxins and Auxin - like Compounds by Ginseng Growth - promoting Bacterium Pseudomonas fluorescens KGPP 207. Agric. Chem. Biotechnol. 43: 264-268
5 Nakano, M. M. and P. Zuber. 1990. Molecular biology of antibiotic production in Bacillus. Crit. Rev. Biotechnol. 10: 223-240   DOI
6 Takeru, T. 1993. Enzymatic Determination of Itoic Acid, a Bacillus subtilis Siderophore, and 2, 3-Dihydroxybenzoic Acid. Appl. Environ. Microbiol. 59: 2343-2345
7 Schwyn, B. and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56   DOI   ScienceOn
8 Holt, J. G, N. R. Krieg, P. H. Sneath, J. T. Staley and S. T. Williams. 1994. Bergey's manual of determinative Bacteriology. 9th., Williams and Wilkins, U.S.A. 1004-1139
9 Shivanna, M. B., M. S. Meera and M. Hyakumachi. 1994. Sterile fungi from zoysia grass rhizosphere as plant growth promoters in spring wheat. Can. J. Microbiol. 40: 637-644
10 Chio, D. W. and I. G. Kim. 1996. Respection of pectic enzyme among the hydrolysis enzymes of plant cell wall. KOREAN J. Food Nutrit. 9: 92-101   과학기술학회마을
11 Waring, W. S. and C. H. Werkman. 1942. Growth of bacteria in an iron-free medium. Arch. Biochem. 1: 303-310
12 Chun, J. O., Y. S. Hwang and J. C. Lee. 1995. Effect of cell wall hydrolase and Ca++ hydrolysis of isolated apple cell wall. J. Kor. Soc. Hort. Sci. 13: 206-207
13 Elad, Y. and R. Baker. 1985. Intluence of trace amounts of cautions and siderophore producing Pseudomonads on chlamydospore germination of Fusarium oxysprum. Phytopathology 75: 1047-1052   DOI
14 Seong, K. Y. 1995. Factors influencing siderophore production by plant growth promoting rhizopseudomonas strains. Kor. J. Soil Sci. Fert. 28: 287-294
15 Lim, H. S., J. M. Lee and S. D. Kim. 2002. A plant growth promoting Pseudomonas fluorescens GL20 - mechanism for disease suppression, outer membrane receptors for ferric siderophore and genetic improvement for increased biocontrol efficacy. J. Microbiol. Biotechnol. 12: 249-257
16 Francine, M. P., B. G. Rolfe, M. F. Hynes and Charles H. H. 2004. Gas chromatography-mass spectrometry analysis of indoleacetic acid and tryptophan following aqueous chloroformate derivatisation of Rhizobium exudates. Plant Physiol. Biochem. 42: 723-729   DOI   ScienceOn
17 Lim, S. U., T. G. Lee and D. M. Sa. 1995. Isolation and physiological characteristics of auxin-producing soil bacteria. Korean J. Soil Sci. Fert. 28: 75-82
18 Weinberg, E. D. 1974. Iron and susceptibility to infectious disease. Science 184: 952-956   DOI
19 Ravikurnar, S., K. Kathiresan, M. B. Selvam and S. Shanthy, 2004. Nitrogen-fixing azotobacters from mangrove habitat and their utility as marine biofertilizers. J. Exp. Mar. Biol. Ecol. 312: 5-17   DOI   ScienceOn
20 Lee, J. K., C. J. Kim, S. D. Kim and J. D. Yoo. 1990. Antifungal antibiotic against fruit rot disease of red pepper form Streptomyces parvullus. Kor. J. Appl. Microbiol. Biotechnol. 18: 142-147
21 Devender K. J. and G. David. 1984. Characterization of a substance produced by Azospirillum which causes branching of wheat root hairs. Can. J. Microbial. 31: 206-210
22 Stosola, F. H. Source book on Gibberellin. 1958. U. S. Dept. of Agr. Washington. 1828-1957
23 Katiyar, V. and G. Reeta. 2004. Improved plant growth from seed bacterization using siderophore overproducing cold resistant mutant of Pseudomonas fluorescens. J. Microbiol. Biotechnol. 14: 653-657
24 Oh, Y J., 2000. Cultural Conditions for the hnprovement in Gibberellic Acid Productivity by a Mutant of Gibberella fujikuroi ATCC 12616 - Gibberella fujikuroi G. - 36. Kor. J. Appl. Microbiol. Biotechnol. 28: 152-155   과학기술학회마을