Browse > Article
http://dx.doi.org/10.7745/KJSSF.2012.45.4.593

Actinobacteria Isolation from Metal Contaminated Soils for Assessment of their Metal Resistance and Plant Growth Promoting (PGP) Characteristics  

Tekaya, Seifeddine Ben (Department of Agricultural and biological Chemistry, Chungbuk National University)
Tipayno, Sherlyn (Department of Agricultural and biological Chemistry, Chungbuk National University)
Chandrasekaran, Murugesan (Department of Agricultural and biological Chemistry, Chungbuk National University)
Yim, Woo-Jong (Department of Agricultural and biological Chemistry, Chungbuk National University)
Sa, Tong-Min (Department of Agricultural and biological Chemistry, Chungbuk National University)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.45, no.4, 2012 , pp. 593-601 More about this Journal
Abstract
Heavy metals and metalloids removal can be considered as one of the most important world challenges because of their toxicity and direct impact on human health. Many processes have been introduced but biological processes of remediation seem to offer the most suitable solution in terms of efficiency and low cost. Actinobacteria constitute one of the major microbial populations in soil, and this can be attributed to their adaptive morphological structure as well as their exceptional metabolic power. Among microbes, actinobacteria are morphologic intermediate between fungi and bacteria. Studies on microbial diversities in metal contaminated lands have shown that actinobacteria may constitute a dominantly active microbiota in addition to ${\alpha}$ Proteobacteria. Furthermore, isolation studies have shown metal removal mechanisms which are reminiscent of notable multiresistant strains, such as Cupriavidus metallidurans. Apart from members of genus Streptomyces, which produce more than 90% of commercialized antibiotics, and the nitrogen fixing Frankia, little attention has been given to other members of this phylum. This is because of difficult culture condition requirements and maintenance. In this review, we focused on specific isolation of actinobacteria and their potential applications in metal bioremediation and plant growth promotion.
Keywords
Actinobacteria; Metal resistance; Bioremediation; PGP;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gacto, M., J. Vicente-Soler, J. Cansado, and T.G. Villa. 2000. Characterization of an extracellular enzyme system produced by Micromonospora chalcea with lytic activity on yeast cells. J. Appl. Microbiol. 88:961-967.   DOI
2 Ghodhbane-Gtari, F., I. Essoussi, M. Chattaoui, B. Chouaia, A. Jaouani, D. Daffonchio, A. Boudabous, and M. Gtari. 2010. Isolation and characterization of non-Frankia actinobacteria from root nodules of Alnus glutinosa, Casuarina glauca and Elaeagnus angustifolia. Symbiosis. 50:51-57.   DOI
3 Gremion, F., A. Chatzinotas, and H. Harms. 2003. Comparative 16S rDNA and rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil. Environ. Microbiol. 5(10):896-907.   DOI
4 Gtari, M., L. Brusetti, S. Gharbi, D. Mora, A. Boudabous, and D. Daffonchio. 2004. Isolation of Elaeagnus-compatible Frankia from soils collected in Tunisia. FEMS Microbiol. Lett. 234:349-355.   DOI
5 Gtari, M., F. Ghodhbane-Gtari, I. Nouioui, N. Beauchemin, and L.S. Tisa. 2012. Phylogenetic perspectives of nitrogen-fixing actinobacteria. Arch Microbiol. 194:3-11.   DOI
6 Haferburg, G. and E. Kothe. 2007. Microbes and metals: interactions in the environment. J. Basic Microb. 47:453-467.   DOI
7 Hamaki, T., M. Suzuki, R. Fudou, Y. Jojima, T. Kajiura, A. Tabuchi, K. Sen, and H. Shibai. 2005. Isolation of Novel Bacteria and Actinomycetes Using Soil-Extract Agar Medium. J. Biosci. Bioeng. 99:485-492.   DOI
8 Hamdali, H., K. Moursalou, G. Tchangbedji, Y. Ouhdouch, and H. Mohamed. 2012. Isolation and characterization of rock phosphate solubilizing actinobacteria from a Togolese phosphate mine. Afr. J. Biotechnol. 11(2):312-320.
9 Iwamoto, T. and M. Nasu. 2001. Current bioremediation practice and perspective. Journal of Bioscience and Bioengineering. 92:1-8.   DOI
10 Karelova, E., J. Harichova, T. Stojnev, D. Pangallo, and P. Ferianc. 2011. The isolation of heavy-metal resistant culturable bacteria and resistance determinants from a heavy-metalcontaminated site. Biologia. 1:18-26.
11 Lakshmipathy, D. and K. Kannabiran. 2010. Biosurfactant and heavy metal resistance activity of Streptomyces spp. isolated from saltpan soil. British J. Pharmacol. Toxicol. 1(1):33-39.
12 Machado, M.D., E.V. Soares, and M.V.M. Helena Soares. 2010. Removal of heavy metals using a brewer's yeast strain of Saccharomyces cerevisae: chemical speciation as a tool in the prediction and improving of treatment efficiency of real electroplating effluents. J. Hazard. Mater. 180:347-353.   DOI
13 Marta, A.P., A. Maria Julia, and C.M. Abate. 2011. Intracellular chromium accumulation by Streptomyces sp. MC1. Water Air Soil Pollut. 214:49-57.   DOI
14 Munson, G.P., D.L. Lam, F.W. Outten, and V.O. Thomas. 2000. Identification of a copper-responsive two-component system on the chromosome of Echerchia coli K-12. J. Bacteriol. 182:5864-5871.   DOI   ScienceOn
15 Nawani, N.N., B.P. Kapadnis, A.D. Das, A.S. Rao, and S.K. Mahajan. 2002. Purification and characterization of thermophilic and acidophilic chitinase from Microbispora sp. V2. J. Appl. Microbiol. 93:965-975.   DOI
16 Nies, D.H. (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 27:313-339.   DOI   ScienceOn
17 Porter, J.N., J.J. Wilhelm, and H.D. Tresner. 1959. Method for the preferential isolation of Actinomycetes from soils. Appl. Environ. Microbiol. 8:174-178.
18 Sardi, P., M. Saracchi, S. Quaroni, B. Petrolini, G.E. Borgonovi, and S. Merli. 1992. Isolation of endophytic Streptomyces strains from surface-sterilized roots. Appl. Environ. Microbiol. 58:2691-2693.
19 Ravel, J., H. Schrempf, and R.T. Hill. 1998. Mercury resistance is encoded by transferable giant linear plasmids in two Chesapeake by Streptomyces strains. Appl. Environ. Microbiol. 64:3383-3388.
20 Richards, J.W., G.D. Krumholz, M.S. Chval, and L.S. Tisa. 2002. Heavy metal resistance patterns of Frankia strains. Appl. Environ. Microbiol.68:923-927.   DOI   ScienceOn
21 Schluenzen, F., C. Takemoto, D.N. Wilson, T. Kaminishi, J.M. Harms, K. Hanawa-Suetsugu, W. Szaflarski, M. Kawazoe, M. Shirouzo, K.H. Nierhaus, S. Yokoyama, and P. Fucini. 2006. The antibiotic Kasugamycin mimics mRNA nucleotides to destabilize tRNA binding and inhibit canonical translation initiation. Nat. Struct. Mol. Biol. 13:871-886.   DOI
22 Schmidt, A., G. Haferburg, M. Sineriz, D. Merten, G. Buchel, and E. Kothe. 2005. Heavy metal resistance mechanisms in actinobacteria for survival in AMD contaminated soils. Chem. Erde. Geochem. 65:131-144.   DOI
23 Shayne, J.J., P. Hugenholtz, P. Sangwan, C.A. Osborne, and P.H. Janssen. 2003. Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl. Environ. Microbiol. 69:7210-7215.   DOI   ScienceOn
24 Sineriz, M.L., E. Kothe, and C.M. Abate. 2009. Cadmium biosorption by Streptomyces sp. F4 isolated from former uranium mine. J. Basic Microbiol. 49:55-62.   DOI
25 Solans, M. (2007) Discaria trinervis-Frankia symbiosis promotion by saprophytic actinomycetes. J. Basic Microbiol. 47:243-250.   DOI
26 Srinath, T., T. Verma, P.W. Ramteke, and S.K. Garg. 2002. Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere. 48:427-435.   DOI
27 Tipayno, S., C.G. Kim, and T. Sa. 2012. T-RFLP analysis of structural changes in soil bacterial communities in response to metal and metalloid contamination and initial phytoremediation. Appl. Soil Ecol. 61:137-146.   DOI
28 Stackebrandt, E. and P. Schumann. 2006. Introduction to the taxonomy of actinobacteria. In: Prokaryotes. 3:297-321.
29 Stackebrandt, E., F.A. Rainey, and N.L. Ward-Rainey. 1997a. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int. J. Syst. Bacteriol. 47:479-491.   DOI
30 Stackebrandt, E., C. Sproer, F.A. Rainey, J. Burghardt, O. Pauker, and H. Hans. 1997b. Phylogenetic analysis of the genus Desulfotomaculum: Evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfotosporosinus gen. nov., comb. nov. Int. J. Syst. Bacteriol. 47:1134-1139.   DOI
31 Valls, M. and D.V. Lorenzo. 2002. Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol. Rev. 26:327-338.   DOI
32 Ventura, M., C. Canchaya, A. Tauch, G. Chandra, G.F. Fitzgerald, K.F. Chater, and D.V. Sinderen. 2007. Genomics of Actinobacteria: Tracing the evolutionary history of an ancient phylum. Microbiol. Mol. Biol. Rev. 71:495-548.   DOI   ScienceOn
33 Williams, S.T. and F.L. Davies. 1965. Use of antibiotics for selective isolation and enumeration of Actinomycetes in soil. J. Gen. Microbiol. 38:251-261.   DOI
34 Williams, S.T., M. Goodfellow, G. Alderson, E.H.H. Wellington, P.H.A. Sneath, and M.J. Sackin. 1983. Numerical classification of streptomyces and related genera. J. Gen. Microbiol. 129:1743-1813.
35 Wink, J., M.R. Kroppenstedt, G. Seibert, and E. Stackebrandt. 2003. Actinomadura namibiensis sp. nov. Int. J. Syst. Evol. Microbiol. 53:721-724.   DOI
36 Ara, I., N.A. Bukhari, D.R. Wijayanti, and M.A. Bakir. 2012. Proteolytic activity of alkaliphilic, salt-tolerant actinomycetes from various regions in Saudi Arabia. Afr. J. Biotechnol. 16:3849-3857.
37 Zhang, H., Y. Kyung Lee, W. Zhang, and H. Kum Lee. 2006. Culturable actinobacteria from the marine sponge Hymeniacidon perleve: isolation and phylogenetic diversity by 16S rRNA gene-RFLP analysis. Antonie van Leeuwenhoek. 90: 159-169.   DOI
38 Abbas, A. and C. Edward. 1989. Effects of metals on a range of Streptomyces species. Appl. Environ. Microb. 55:2030-2035.
39 Aldesuquy, H.S., F.A. Mansour, and S.A. Abou-Hamed. 1998. Effect of the culture filtrate of Streptomyces on growth and productivity of wheat plants. Folia Microbiol. 43(5):465-470.   DOI
40 Annaliesa, S.A. and E.M.H. Wellington. 2001. The taxonomy of Streptomyces and related genera. Int. J. Syst. Evol. Micr. 51:797-814.   DOI
41 Baskaran, R., R. Vijayakumar, and P.M. Mohan. 2011. Enrichment method for the isolation of bioactive actinomycetes from mangrove sediments of Andaman Islands, India. Malays. J. Microbiol. 7(1):26-32.
42 Benson, D.R. and W.B. Silvester. 1993. Biology of Frankia strains, Actinomycetes symbionts of actinorhizal plants. Microbiol. Rev. 57:293-319.
43 Berndt, H., D.J. Lowe, and G.M. Yates. 1978. The nitrogen-fixing system of Corynebacterium autotrophicum. Eur. J. Biochem. 86:133-142.   DOI
44 Berdy, J. (2005) Bioactive microbial metabolites. J. Antibiot. 58(1):1-26.   DOI   ScienceOn
45 Biggins, D.R. and J.R. Postgate. 1969. Nitrogen fixation by cultures and cell-free extracts of Mycobacterium flavum 301. J. gen. Microbiol. 56:181-193.   DOI
46 Colin, V.L., B.V. Liliana, and C.M. Abate. 2012. Indigenous microorganisms as potential bioremediators for environments contaminated with heavy metals. Int. Biodeter. Biodegr. 69:28-37.   DOI
47 Copping, L.G. and S.O. Duke. 2007. Natural products that have been used commercially as crop protection agents. Pest Manag. Sci. 63:524- 554.   DOI   ScienceOn
48 Duffus, J.H. (2002) Heavy metals_ A meaningless term?. Pure Appl. Chem. 74:793-807.   DOI
49 De Boer, W., S. Gerards, P.J.A. Gunnwiek Klein, and R. Modderman. 1999. Response of the chitinolytic microbial community to chitin amendments of dune soils. Biol. Fertil. Soils. 29:170-177.   DOI
50 Doumbou, C.L., M.K. Hamby Salove, D.L. Crawford, and C. Beaulieu. 2001. Actinomycetes, promising tools to control plant diseases and to promote plant growth. Phytoprotection. 82:85-102.   DOI
51 Eitinger, T. and M.A. Mandrand-Berthelot. 2000. Nickel transport systems in microorganisms. Arch Microbiol. 173:1-9.   DOI   ScienceOn
52 El-Tarabily, K.A. and S. Krishnapillai. 2006. Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biol. Biochem. 38:1505-1520.   DOI
53 El-Tarabily, K.A., G.E.S.T. Hardy, K. Sivasithamparam, A.M. Hussein, and D.I. Kurtboke. 1997. The potential for the biological control of cavity-spot disease of carrots, caused by Pythium cloratum, by streptomycete and non-streptomycete actinomycetes. New Phytologist. 137:495-507.   DOI
54 El-Tarabily, K.A., M.H. Soliman, A.H. Nassar, H.A. Al-Hassani, K. Sivasithamparam, F. McKenna, and G.E.S.T Hardy. 2000. Biological control of Sclerotinia minor using a chinolytic bacterium and actinomycetes. Plant Pathol. 49:573-583.   DOI
55 Essoussi, I., F. Ghodhbane-Gtari, H. Amairi, H. Sghaier, A. Jaouani, L. Brusetti, D. Daffonchio, A. Boudabous, and M. Gtari. 2010. Esterase as an enzymatic signature of geodermatophilaceae adaptability to Sahara desert stones and monuments. J. Appl. Microbiol. 108:1723-1732.   DOI
56 Furrer, G., L.P. Brian, U. Kai-Uwe, P. Rosemarie, and H.C. William. 2002. The origin of Aluminium flocs in polluted streams. Science. 297:2245-2247.   DOI