• Title/Summary/Keyword: Phytophthora rot

Search Result 130, Processing Time 0.021 seconds

Isolation and Characterization of Burkholderia cepacia strain YJK2, Antagonistic Microorganism of Paprika Pathogens (파프리카 병원균들에 대한 길항미생물, Burkholderia cepacia strain YJK2의 분리 및 특성)

  • Yang, Soo-Jeong;Kim, Hyung-Moo;Ju, Ho-Jong
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.1
    • /
    • pp.133-148
    • /
    • 2015
  • Although several adverse effects have been increased in recent years, synthetic agro-chemicals have been widely used to control diseases on paprika. This research was conducted to isolate and to characterize the antagonistic microorganism to control major paprika diseases, gray mold rot, fruit and stem rot, phytophthora blight, sclerotium rot, and wilt disease. Analysis of the fatty acid and analysis of the 16S rDNA gene sequence revealed that YKJ2 isolated in this research belongs to a group of Burkholderia cepacia. Specially, 16S rDNA gene sequence of YKJ2 showed 99% of sequence similarity with B. cepacia. Observation through the optical microscope revealed that YKJ2 was effective on suppression of the spore germination and the hyphal growth of pathogens. YKJ2 treatment on pathogens induced marked morphological changes like hyphal swelling and degradation of cell wall. In the case of phytophthora blight, the zoosporangium formation was restrained. On the basis of the results of this study, we propose that an antagonistic microorganism, B. cepacia, found in this study naming as "B. cepacia strain YKJ2" and has great potential as one of biological control agents against major diseases of paprika.

Studies on Phytouthora disease of Panax ginseng C. A Meyer; its causal agent and possible control measures (인삼의 질병.병원균 및 방지책에 관하여)

  • 오승환;박창석
    • Journal of Ginseng Research
    • /
    • v.4 no.2
    • /
    • pp.186-193
    • /
    • 1980
  • The causal organism of Phytophthora disease on Panax ginseng Meyer in Korea was isolated and identified as Phytophthora cactorum. It's pathogenicity, etiology, and possible control measures were investigated. Disease symptoms on various parts of ginseng plants were also described The fungus caused seedling and mature plant blight and root rot. Oospores were easily formed on potato dextrose agar and corn meal agar. Oospores, however, were not formed in the diseased root tissues but did in the in footed shoots such as leaves, petioles, and stems and in the inoculated berries.

  • PDF

Root Rot of Japanese Angelica Caused by Phytophthora cactorum in Nursery and Mycological Characteristics of the Isolates (두릅나무 묘목생산포의 역병 발생 및 분리균의 균학적 특성)

  • Lee, Sang-Hyun;Lee, Jae-Pil;Kim, Kyung-Hee;Shin, Hyeon-Dong
    • The Korean Journal of Mycology
    • /
    • v.33 no.2
    • /
    • pp.98-102
    • /
    • 2005
  • In 2003 to 2005, the root rot of Japanese angelica (Aralia elata) was surveyed in nursery beds of Korea, where incidence of the disease often reached up to 100%. Three isolates were obtained from the infected roots, and identified as Phytophthora cactorum on the basis of cultural, morphological characteristics and molecular analysis. The isolates were characterized by having markedly papillate and broadly ovoid deciduous sporangia. The optimum temperature for mycelium growth was at $25^{\circ}C$ on V8 juice agar. Pathogenicity of the isolates was confirmed by soil mixture inoculation. Approximately 900 bp of ITS rDNA was amplified from all 3 isolates and band pattern of restriction fragments observed by Alu I, Msp I, and Taq I digestion also supported the result of the morphological identification when compared with PhytID database.

Evaluation of Watermelon Germplasm for Resistance to Phytophthora Blight Caused by Phytophthora capsici

  • Kim, Min-Jeong;Shim, Chang-Ki;Kim, Yong-Ki;Jee, Hyeong-Jin;Hong, Sung-Jun;Park, Jong-Ho;Han, Eun-Jung
    • The Plant Pathology Journal
    • /
    • v.29 no.1
    • /
    • pp.87-92
    • /
    • 2013
  • This study was conducted to determine the Phytophthora rot resistance of 514 accessions of watermelon germplasm, Citrullus lanatus var lanatus. About 46% of the 514 accessions tested were collections from Uzbekistan, Turkey, China, U.S.A., and Ukraine. Phytophthora capsici was inoculated to 45-day-old watermelon seedlings by drenching with 5 ml of sporangial suspension ($10^6$ sporangia/ml). At 7 days after inoculation, 21 accessions showed no disease symptoms while 291 accessions of susceptible watermelon germplasm showed more than 60.1% disease severity. A total of 510 accessions of watermelon germplasm showed significant disease symptoms and were rated as susceptible to highly susceptible 35 days after inoculation. The highly susceptible watermelon germplasm exhibited white fungal hyphae on the lesion or damping off with water-soaked and browning symptoms. One accession (IT032840) showed moderate resistance and two accessions (IT185446 and IT187904) were resistant to P. capsici. Results suggest that these two resistant germplasm can be used as a rootstock and as a source of resistance in breeding resistant watermelon varieties against Phytophthora.

Control of Phythophthora capsici and residual characteristics by drenching of pesticides on tomato in hydroponic culture system (약제 관주처리에 의한 양액재배 토마토의 역병 방제 및 농약잔류 특성)

  • Ihm, Yang-Bin;Lee, Jung-Sup;Kyung, Kee-Sung;Kim, Chan-Sub;Oh, Kyeong-Seok;Jin, Yong-Duk;Lee, Byung-Moo
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.4
    • /
    • pp.287-292
    • /
    • 2002
  • To establish effective and safe control method against Phytophthora root rot caused by Phytophthora capsici on tomato in hydroponic culture, three pesticides, oxadixyl copper hydroxide 8% WP, metalaxyl copper oxychloride 15% WP, and dimethomorph. dithianon 38% WP at 4 concentration levels were tested on potato dextrose agar medium inoculated with Phytophthora capsici. All pesticides inhibited mycelial growth, but two pesticides of them, metalaxyl copper oxychloride WP and dimethomorph. dithianon WP, were selected as effective pesticides for the efficacy test in a hydroponic culture. Forty days after transplanting of tomato seedlings, 4 ml of sporangia of P. capsici (about 25 sporangi/ml) per plot was inoculated around tomato plant root, and then 5 days after inoculation, the pesticides diluted at 5,000 times were drenched 1, 2 or 3 times per plot on the culture cube at 15 days interval. Fifteen days after drenching, tomato fruits and hydroponic culture solution were sampled for the analysis of pesticide residues. Dimethomorph was detected 0.001 and 0.003 mg/kg in tomato of the plots sprayed 2 and 3 times with dimethomorph dithianon WP of which detection levels were far below compared with 1.0 mg/kg of the Korean MRL of dimethomorph on tomato. Incidences of Phytophthora root rot were $30.5{\sim}50%$ in the plots drenched at 1 or 2 times with metalaxyl.copper oxychloride WP, and $16.7{\sim}25%$ in the plots treated with dimethomorph dithianon WP. However, there was no incidence of Phytophthora root rot in the plots treated at 3 times with both of pesticides, showing no phytotoxic effect. Based on the results, the drenching of these pesticides on the culture cube could be recommended as a very safe and effective control method for Phytophthora root rot in tomato.

Identification of New Isolates of Phytophthora sojae and the Reactions of Korean Soybean Cultivars Following Hypocotyl Inoculation

  • Kang, In Jeong;Kang, Sunjoo;Jang, Ik Hyun;Jang, Yun Woo;Shim, Hyung Kwon;Heu, Sunggi;Lee, Sungwoo
    • The Plant Pathology Journal
    • /
    • v.35 no.6
    • /
    • pp.698-704
    • /
    • 2019
  • Phytophthora root and stem rot (PRSR) caused by Phytophthora sojae is one of the most destructive diseases of soybean. PRSR recently became an issue as soybean cultivation in paddy fields increased in South Korea. The management of PRSR mainly involves R-gene-mediated resistance, however, little is known about the resistance in Korean cultivars. Major Korean soybean cultivars were investigated for the presence or absence of R-gene-mediated resistance to four P. sojae isolates, two of which were new isolates. Isolate-specific reactions were observed following P. sojae inoculation. Of 21 cultivars, 15-20 cultivars (71.4-95.2%) showed susceptible reaction for each isolate. Ten cultivars were susceptible to all the isolates, and six cultivars were identified to have R-gene-mediated resistance to one or two isolates. The results of this study would provide a framework for the discovery of resistant cultivars, development of new cultivars resistant to P. sojae, and investigation of pathogenic diversity of P. sojae population in South Korea.

Biocontrol of Korean Ginseng Root Rot Caused by Phytophthora cactorum Using Antagonistic Bacterial Strains ISE13 and KJ1R5

  • Sang, Mee-Kyung;Chiang, Mae-Hee;Yi, Eun-Seob;Park, Kuen-Woo;Kim, Ki-Deok
    • The Plant Pathology Journal
    • /
    • v.22 no.1
    • /
    • pp.103-106
    • /
    • 2006
  • In this biocontrol research, we evaluated disease suppressive effects of antagonistic bacterial strains ISE13 and KJ1R5 against Korean ginseng root rot caused by P. eaetorum. We also examined the effects of nutrient solution in the hydroponic culture system for Korean ginseng on biological activity of the bacterial strains. As results of dual culture tests of the bacterial strains on $V_{8}$ juice agar, the strain ISE13 showed antifungal activity against P. eaetorum and other plant pathogenic fungi, but the strain KJ1R5 did not. When their inhibitory effects against infection of P. eaetorum on the roots grown in either nutrient solution or water were tested, the strains ISE13 and KJ1R5 inhibited the disease severity of Korean ginseng roots only grown with water, compared to buffer-treated, inoculated controls. However, the nutrient solution used for hydroponic cultures of ginseng in pots caused higher levels of disease severity by the strains ISE13 and KJ1R5 from 418.8\%$ to 40.0\%$ and from 24.3\%$ to 45.0\%$, respectively. In this study, the bacterial strains ISE13 and KJ1R5 could be potentially biocontrol agents to suppress Korean ginseng root rot caused by P. eaetorum. However, more attention using nutrient solution in hydroponic cultures for Korean ginseng production should be applied in biocontrol of plant diseases using the antagonistic microorganisms.

Identification and Biological Characteristics of an Antifungal Compound Extracted from Cocklebur (Xanthium strumarium) against Phytophthora drechsleri

  • Kim, Dong-Kil;Shim, Chang-Ki;Bae, Dong-Won;Kawk, Yeon-Sik;Yang, Min-Suk;Kim, Hee-Kyu
    • The Plant Pathology Journal
    • /
    • v.18 no.5
    • /
    • pp.288-292
    • /
    • 2002
  • Crude extract of Xanthium strumarium inhibited mycelial growth and zoospore germination of Phytophthora drechsleri, the causal agent of Atractylis rot, in vitro. Fresh sap from X. strumarium at 50-fold dilution was highly effective in controlling the disease Incidence in pot and field trials. Purified extracts from cocklebur Inhibited mycelial growth and zoospore germination in vitro at a concentration of 12.5 $\mu\textrm{g}$/ml and 15.6 $\mu\textrm{g}$/ml, respectively. Hyphal tips affected by the compound showed malformation. The antifungal compound puri- fied fromX. strumarium was identified as 4-oxo-1 (5), 2,11, (13)-xanthatriene-12,8-olide, known as "deacetyl xanthumin".min".uot;.

Validity Test for Molecular Markers Associated with Resistance to Phytophthora Root Rot in Chili Pepper (Capsicum annuum L.) (고추의 역병 저항성과 연관된 분자표지의 효용성 검정)

  • Lee, Won-Phil;Lee, Jun-Dae;Han, Jung-Heon;Kang, Byoung-Cheorl;Yoon, Jae-Bok
    • Horticultural Science & Technology
    • /
    • v.30 no.1
    • /
    • pp.64-72
    • /
    • 2012
  • Phytophthora root rot has been causing a serious yield loss in pepper production. Since 2004, the year in which commercial cultivars resistant to the disease were firstly commercialized, it has been necessary to introduce the resistance into domestic pepper cultivars for dried red pepper. Therefore, developing molecular markers linked to the resistance is required for an accurate selection of resistant plants and increasing breeding efficiency. Until now, several markers associated with the major dominant gene resistant to Phytophthora root rot have been reported but they have some serious limitations for their usage. In this study, we aimed to develop molecular markers linked to the major dominant gene that can be used for almost of all genetic resources resistant to Phytophthora root rot. Two segregating $F_2$ populations derived from a 'Subicho' ${\times}$ 'CM334' combination and a commercial cultivar 'Dokyacheongcheong' were used to develop molecular markers associated with the resistance. After screening 1,024 AFLP primer combinations with bulked segregant analysis, three AFLP (AFLP1, AFLP2, and AFLP3) markers were identified and converted into three CAPS markers (M1-CAPS, M2-CAPS, and M3-CAPS), respectively. Among them, M3-CAPS marker was further studied in ten resistants, fourteen susceptibles, five hybrids and 53 commercial cultivars. As a result, M3-CAPS marker was more fitted to identify Phytophthora resistance than previously reported P5-SNAP and Phyto5.2-SCAR markers. The result indicated that the M3-CAPS marker will be useful for resistance breeding to Phytophthora root rot in chili pepper.