DOI QR코드

DOI QR Code

Validity Test for Molecular Markers Associated with Resistance to Phytophthora Root Rot in Chili Pepper (Capsicum annuum L.)

고추의 역병 저항성과 연관된 분자표지의 효용성 검정

  • Lee, Won-Phil (R&D Unit, Pepper & Breeding Institute, Business Incubator, Seoul National University) ;
  • Lee, Jun-Dae (R&D Unit, Pepper & Breeding Institute, Business Incubator, Seoul National University) ;
  • Han, Jung-Heon (R&D Unit, Pepper & Breeding Institute, Business Incubator, Seoul National University) ;
  • Kang, Byoung-Cheorl (Department of Plant Science, Seoul National University) ;
  • Yoon, Jae-Bok (R&D Unit, Pepper & Breeding Institute, Business Incubator, Seoul National University)
  • 이원필 ((주)고추와육종 기업부설연구소) ;
  • 이준대 ((주)고추와육종 기업부설연구소) ;
  • 한정헌 ((주)고추와육종 기업부설연구소) ;
  • 강병철 (서울대학교 식물생산과학부) ;
  • 윤재복 ((주)고추와육종 기업부설연구소)
  • Received : 2011.09.19
  • Accepted : 2011.10.12
  • Published : 2012.02.29

Abstract

Phytophthora root rot has been causing a serious yield loss in pepper production. Since 2004, the year in which commercial cultivars resistant to the disease were firstly commercialized, it has been necessary to introduce the resistance into domestic pepper cultivars for dried red pepper. Therefore, developing molecular markers linked to the resistance is required for an accurate selection of resistant plants and increasing breeding efficiency. Until now, several markers associated with the major dominant gene resistant to Phytophthora root rot have been reported but they have some serious limitations for their usage. In this study, we aimed to develop molecular markers linked to the major dominant gene that can be used for almost of all genetic resources resistant to Phytophthora root rot. Two segregating $F_2$ populations derived from a 'Subicho' ${\times}$ 'CM334' combination and a commercial cultivar 'Dokyacheongcheong' were used to develop molecular markers associated with the resistance. After screening 1,024 AFLP primer combinations with bulked segregant analysis, three AFLP (AFLP1, AFLP2, and AFLP3) markers were identified and converted into three CAPS markers (M1-CAPS, M2-CAPS, and M3-CAPS), respectively. Among them, M3-CAPS marker was further studied in ten resistants, fourteen susceptibles, five hybrids and 53 commercial cultivars. As a result, M3-CAPS marker was more fitted to identify Phytophthora resistance than previously reported P5-SNAP and Phyto5.2-SCAR markers. The result indicated that the M3-CAPS marker will be useful for resistance breeding to Phytophthora root rot in chili pepper.

고추 역병은 그 동안 우리나라 고추 생산에 있어서 심각한 수량감소의 피해를 주어 왔으며, 2004년 처음으로 고추 역병 저항성 품종이 보급되기 시작하면서, 국내 건고추 육종에 있어서 역병 저항성의 도입은 필수불가결한 것으로 되었다. 그러므로 저항성 식물체 선발의 정확성 제고 및 육종의 효율 향상을 위하여 역병 저항성과 연관된 분자표지의 개발이 요구된다. 지금까지 고추 역병 저항성 주동 유전자에 연관된 분자표지가 일부 개발되어 있지만, 부분적으로 밖에 사용할 수 없다는 문제점이 있다. 따라서 본 연구에서는 역병 저항성 소재에 상관없이 저항성을 구별해 낼 수 있는 분자표지를 개발하고자 하였다. 이를 위해 '수비초' ${\times}$ 'CM334' 조합의 $F_2$ 분리집단($SF_2$)과 역병 저항성 시판 $F_1$품종('독야청청')을 자가수정한 $F_2$ 분리집단($DCF_2$)을 만들었다. BSA-AFLP 방법으로 총 1,024 프라이머 조합을 사용하여 역병 저항성과 연관된 세 개의 AFLP 분자표지(AFLP1, AFLP2 및 AFLP3)를 선발하였으며, 이를 CAPS 분자표지(M1-CAPS, M2-CAPS 및 M3-CAPS)로 전환하였다. 이 중 M3-CAPS 분자표지를 10개의 역병 저항성 계통, 14개의 이병성 계통, 'CM334'를 화분친으로 사용한 5개의 $F_1$ 조합, 그리고 53개의 시판 $F_1$ 품종에 적용해 본 결과, 역병 저항성 표현형과 M3-CAPS 분자표지의 마커형이 잘 일치하였고, P5-SNAP과 Phyto5.2-SCAR 분자표지보다 높은 실용성을 보이는 결과를 얻었다. 따라서, M3-CAPS 분자표지는 역병 저항성 고추 계통 육성에 많은 도움을 줄 수 있을 것으로 생각한다.

Keywords

References

  1. Bonnet, J., S. Danan, C. Boudet, L. Barchi, A.M. Sage-Palloix, B. Caromel, A. Palloix, and V. Lefebvre. 2007. Are the polygenic architectures of resistance to Phytophthora capsici and P. parasitica independent in pepper? Theor. Appl. Genet. 115:253-264. https://doi.org/10.1007/s00122-007-0561-x
  2. Hospital, F. 2009. Challenges for effective marker-assisted selection in plants. Genetica 136:303-310. https://doi.org/10.1007/s10709-008-9307-1
  3. Kim, H.J., H.B. Yang, B.N. Chung, and B.C. Kang. 2008a. Survey and application of DNA makers linked to TSWV resistance. Kor. J. Hort. Sci. Technol. 26:464-470.
  4. Kim, H.J., S.H. Nahm, H.R. Lee, G.B. Lee, K.T. Yoon, B.C. Kang, D. Choi, O.Y. Kweon, M.C. Cho, J.K. Kwon, J.H. Han, J.H. Kim, M. Park, J.H. Ahn, S.H. Choi, N.H. Her, J.H. Sung, and B.D. Kim. 2008b. BAC-derived markers converted from RFLP linked to Phytophthora capsici resistance in pepper (Capsicum annuum L.). Theor. Appl. Genet. 118:15-27. https://doi.org/10.1007/s00122-008-0873-5
  5. Kim, J.S., W.I. Kim, H.J. Jee, J.G. Gwang, C.K. Kim, and C.K. Shim. 2010a. Evaluation of resistance in hot pepper germplasm to Phytophthora blight on biological assay. Kor. J. Hort. Sci. Technol. 28:802-809.
  6. Kim, S., K.T. Kim, D.H. Kim, E.Y. Yang, M.C. Cho, A. Jamal, Y. Chae, D.H. Pae, D.G. Oh, and J.K. Hwang. 2010b. Identification of quantitative trait loci associated with anthracnose resistance in chili pepper (Capsicum spp.). Kor. J. Hort. Sci. Technol. 28:1014-1024.
  7. Lecomte, L., P. Duffé, M. Buret, B. Servin, F. Hospital, and M. Causse. 2004. Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds. Theor. Appl. Genet. 109:658-668.
  8. Lee, M.Y. 2002. Screening system for resistance to Phytophthora blight in chili pepper (Capsicum annuum L.) and inheritance of the resistance. Dissertation (MS), Seoul Natl. Univ., Korea.
  9. Lee, W.P. 2009. Genetic analysis and marker-assisted breeding for Phytophthora root rot resistance in chili pepper (Capsicum annuum L.). Dissertation (Ph.D.), Seoul Natl. Univ., Korea.
  10. Lefebvre, V. and A. Palloix. 1996. Both epistatic and additive effects of QTLs are involved in polygenic induced resistance to disease: a case study, the interaction pepper-Phytophthora capsici Leonian. Theor. Appl. Genet. 93:503-511. https://doi.org/10.1007/BF00417941
  11. Michelmore, R.W., I. Paran, and R.V. Kesseli. 1991. Identification of markers linked to disease resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA 88:9828-9832. https://doi.org/10.1073/pnas.88.21.9828
  12. Minamiyama, Y., M. Tsuro, T. Kubo, and M. Hirai. 2007. QTL analysis for resistance to Phytophthora capsici in pepper using a high density SSR-based map. Breed. Sci. 57:129-134. https://doi.org/10.1270/jsbbs.57.129
  13. Ogundiwin, E.A., M. Berke, T.F. Massoudi, L.L. Black, G. Huestis, D. Choi, S. Lee, and J.P. Prince. 2005. Construction of 2 intraspecific linkage maps and identification of resistance QTLs for Phytophthora capsici root-rot and foliar-blight diseases of pepper (Capsicum annuum L.). Genome 48:698-711. https://doi.org/10.1139/g05-028
  14. Quirin, E.A., E.A. Ogundiwin, J.P. Prince, M. Mazourek, M.O. Briggs, T.S. Chlanda, K.T. Kim, M. Falise, B.C. Kang, and M.M. Jahn. 2005. Development of sequence characterized amplified region (SCAR) primers for the detection of Phyto.5.2, a major QTL for resistance to Phytophthora capsici Leon. in pepper. Theor. Appl. Genet. 110:605-612. https://doi.org/10.1007/s00122-004-1874-7
  15. Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Press, NY p. 11.23-11.28.
  16. Siebert, P.D., A. Chenchik, D.E. Kellogg, K.A. Lukyanov, and S.A. Lukyanov. 1995. An improved method for walking in uncloned genomic DNA. Nucl. Acids Res. 23:1087-1088. https://doi.org/10.1093/nar/23.6.1087
  17. Sugita, T., K. Yamaguchi, T. Kinoshita, K. Yuji, Y. Sugimura, R. Nagata, S. Kawasaki, and A. Todoroki. 2006. QTL analysis for resistance to Phytophthora blight (Phytophthora capsici Leon.) using an intraspecific doubled-haploid population of Capsicum annuum. Breed. Sci. 56:137-145. https://doi.org/10.1270/jsbbs.56.137
  18. Thabuis, A., A. Palloix, S. Pflieger, A.M. Daubèze, C. Caranta, and V. Lefebvre. 2003. Comparative mapping of Phytophthora resistance loci in pepper germplasm: Evidence for conserved resistance loci across Solanaceae and for a large genetic diversity. Theor. Appl. Genet. 106:1473-1485.
  19. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van der Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper, and M. Zabeau. 1995. AFLP: A new technique for DNA fingerprinting. Nucl. Acids Res. 23:4407-4414. https://doi.org/10.1093/nar/23.21.4407

Cited by

  1. Combined use of bulked segregant analysis and microarrays reveals SNP markers pinpointing a major QTL for resistance to Phytophthora capsici in pepper vol.127, pp.11, 2014, https://doi.org/10.1007/s00122-014-2394-8
  2. in Chili Pepper vol.2019, pp.2314-6141, 2019, https://doi.org/10.1155/2019/1093186
  3. 유기농업자재와 순지르기를 이용한 오이 노균병 방제 vol.24, pp.4, 2012, https://doi.org/10.11625/kjoa.2016.24.4.919
  4. Molecular Marker Development and Gene Cloning for Diverse Disease Resistance in Pepper (Capsicum annuum L.): Current Status and Prospects vol.8, pp.2, 2012, https://doi.org/10.9787/pbb.2020.8.2.89
  5. Genomic regions and candidate genes linked with Phytophthora capsici root rot resistance in chile pepper (Capsicum annuum L.) vol.21, pp.1, 2012, https://doi.org/10.1186/s12870-021-03387-7
  6. Evaluation of Genotypes for Major Diseases of Pepper Genetic Resources Using the Fluidigm System vol.53, pp.4, 2012, https://doi.org/10.9787/kjbs.2021.53.4.432