• Title/Summary/Keyword: Photovoltaic solar cell, Silicon film

Search Result 58, Processing Time 0.026 seconds

Bow Reduction in Thin Crystalline Silicon Solar Cell with Control of Rear Aluminum Layer Thickness (박형 결정질 실리콘 태양전지에서의 휨현상 감소를 위한 알루미늄층 두께 조절)

  • Baek, Tae-Hyeon;Hong, Ji-Hwa;Lim, Kee-Joe;Kang, Gi-Hwan;Kang, Min-Gu;Song, Hee-Eun
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.194-198
    • /
    • 2012
  • Crystalline silicon solar cell remains the major player in the photovoltaic marketplace with 80% of the market, despite the development of various thin film technologies. Silicon's excellent efficiency, stability, material abundance and low toxicity have helped to maintain its position of dominance. However, the cost of silicon materials remains a major barrier to reducing the cost of silicon photovoltaics. Using the crystalline silicon wafer with thinner thickness is the promising way for cost and material reduction in the solar cell production. However, the thinner the silicon wafer is, the worse bow phenomenon is induced. The bow phenomenon is observed when two or more layers of materials with different temperature expansion coefficiencies are in contact, in this case silicon and aluminum. In this paper, the solar cells were fabricated with different thicknesses of Al layer in order to reduce the bow phenomenon. With less amount of paste applications, we observed that the bow could be reduced by up to 40% of the largest value with 120 micron thickness of the wafer even though the conversion efficiency decrease by 0.5% occurred. Since the bowed wafers lead to unacceptable yield losses during the module construction, the reduction of bow is indispensable on thin crystalline silicon solar cell. In this work, we have studied on the counterbalance between the bow and conversion efficiency and also suggest the formation of enough back surface field (BSF) with thinner Al layer application.

Advances in Absorbers and Reflectors of Amorphous Silicon Oxide Thin Film Solar Cells for Tandem Devices (적층형 태양전지를 위한 비정질실리콘계 산화막 박막태양전지의 광흡수층 및 반사체 성능 향상 기술)

  • Kang, Dong-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.2
    • /
    • pp.115-118
    • /
    • 2017
  • Highly photosensitive and wide bandgap amorphous silicon oxide (a-$SiO_x$:H) films were developed at low temperature ranges ($100{\sim}150^{\circ}C$) with employing plasma-enhanced chemical vapor deposition by optimizing $H_2/SiH_4$ gas ratio and $CO_2$ flow. Photosensitivity more than $10^5$ and wide bandgap (1.81~1.85 eV) properties were used for making the a-$SiO_x$:H thin film solar cells, which exhibited a high open circuit voltage of 0.987 V at the substrate temperature of $100^{\circ}C$. In addition, a power conversion efficiency of 6.87% for the cell could be improved up to 7.77% by employing a new n-type nc-$SiO_x$:H/ZnO:Al/Ag triple back-reflector that offers better short circuit currents in the thin film photovoltaic devices.

The fabrication of textured ZnO:Al films using HCI wet chemical etching (후 식각법을 이용한 Textured ZnO:Al 투명전도막 제조)

  • Yoo, Jin-Su;Lee, Jeong-Chul;Kang, Ki-Hwan;Kim, Seok-Ki;Yoon, Kyung-Hoon;Song, Jin-Soo;Park, I-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1482-1484
    • /
    • 2002
  • Transparent conductive oxides (TCO) are necessary as front electrode for most thin film solar cell. In our paper, transparent conducting aluminum-doped Zinc oxide films (ZnO:Al) were prepared by rf magnetron sputtering on glass (Corning 1737) substrate as a variation of the deposition condition. After deposition, the smooth ZnO:Al films were etched in diluted HCI (0.5%) to examine the electrical and surface morphology properties as a variation of the time. The most important deposition condition of surface-textured ZnO films by chemical etching is the processing pressure and the substrate temperature. In low pressures (0.9mTorr) and high substrate temperatures $({\leq}300^{\circ}C)$, the surface morphology of films exhibits a more dense and compact film structure with effective light-trapping to apply the silicon thin film solar cells.

  • PDF

A Study on the Near Infrared Ray Wavelength Conversion Film for Improving Conversion Efficiency of Solar Cell (태양전지 변환 효율 향상을 위한 근적외선 파장 변환 필름에 관한 연구)

  • Park, Byung Kyu;Park, Gye Choon;Lee, Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.11
    • /
    • pp.699-704
    • /
    • 2017
  • The amount of electric power for photovoltaic power generation depends on the location of the power plant and the direction of solar cell. The solar cell controls the generation of solar power plants. Therefore, the structure of solar cell, manufacturing method, and optic technology were factors contributing to increased solar cell efficiency; however, the technical limit has been reached. Herein, we propose a new method to increase the solar cell efficiency using a wavelength conversion technology that converts ultraviolet and infrared rays, which are not effectively used in solar cells, into effective wavelength of solar cell. We used fluoride $Na(Ca)YF_4$ phosphor for wavelength conversion. Then, a wavelength-conversion fluorescent paste, prepared using an organic-silicon binder, was used to prepare a film that was applied to Si solar cells. It was confirmed that conversion efficiency improved by 5% or more.

Plasmonic Enhanced Light Absorption by Silver Nanoparticles Formed on Both Front and Rear Surface of Polycrystalline Silicon Thin Film Solar Cells

  • Park, Jongsung;Park, Nochang;Varlamov, Sergey
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.493-493
    • /
    • 2014
  • The manufacturing cost of thin-film photovoltics can potentially be lowered by minimizing the amount of a semiconductor material used to fabricate devices. Thin-film solar cells are typically only a few micrometers thick, whereas crystalline silicon (c-Si) wafer solar cells are $180{\sim}300\mu}m$ thick. As such, thin-film layers do not fully absorb incident light and their energy conversion efficiency is lower compared with that of c-Si wafer solar cells. Therefore, effective light trapping is required to realize commercially viable thin-film cells, particularly for indirect-band-gap semiconductors such as c-Si. An emerging method for light trapping in thin film solar cells is the use of metallic nanostructures that support surface plasmons. Plasmon-enhanced light absorption is shown to increase the cell photocurrent in many types of solar cells, specifically, in c-Si thin-film solar cells and in poly-Si thin film solar cell. By proper engineering of these structures, light can be concentrated and coupled into a thin semiconductor layer to increase light absorption. In many cases, silver (Ag) nanoparticles (NP) are formed either on the front surface or on the rear surface on the cells. In case of poly-Si thin film solar cells, Ag NPs are formed on the rear surface of the cells due to longer wavelengths are not perfectly absorbed in the active layer on the first path. In our cells, shorter wavelengths typically 300~500 nm are also not effectively absorbed. For this reason, a new concept of plasmonic nanostructure which is NPs formed both the front - and the rear - surface is worth testing. In this simulation Al NPs were located onto glass because Al has much lower parasitic absorption than other metal NPs. In case of Ag NP, it features parasitic absorption in the optical frequency range. On the other hand, Al NP, which is non-resonant metal NP, is characterized with a higher density of conduction electrons, resulting in highly negative dielectric permittivity. It makes them more suitable for the forward scattering configuration. In addition to this, Ag NP is located on the rear surface of the cell. Ag NPs showed good performance enhancement when they are located on the rear surface of our cells. In this simulation, Al NPs are located on glass and Ag NP is located on the rear Si surface. The structure for the simulation is shown in figure 1. Figure 2 shows FDTD-simulated absorption graphs of the proposed and reference structures. In the simulation, the front of the cell has Al NPs with 70 nm radius and 12.5% coverage; and the rear of the cell has Ag NPs with 157 nm in radius and 41.5% coverage. Such a structure shows better light absorption in 300~550 nm than that of the reference cell without any NPs and the structure with Ag NP on rear only. Therefore, it can be expected that enhanced light absorption of the structure with Al NP on front at 300~550 nm can contribute to the photocurrent enhancement.

  • PDF

Improving Device Efficiency for n-i-p Type Solar Cells with Various Optimized Active Layers

  • Iftiquar, Sk Md;Yi, Junsin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.70-73
    • /
    • 2017
  • We investigated n-i-p type single junction hydrogenated amorphous silicon oxide solar cells. These cells were without front surface texture or back reflector. Maximum power point efficiency of these cells showed that an optimized device structure is needed to get the best device output. This depends on the thickness and defect density ($N_d$) of the active layer. A typical 10% photovoltaic device conversion efficiency was obtained with a $N_d=8.86{\times}10^{15}cm^{-3}$ defect density and 630 nm active layer thickness. Our investigation suggests a correlation between defect density and active layer thickness to device efficiency. We found that amorphous silicon solar cell efficiency can be improved to well above 10%.

Low Temperature Deposition of Microcrystalline Silicon Thin Films for Solar Cells (태양전지용 미세결정 실리콘 박막의 저온 증착)

  • Lee, J.C.;Yoo, J.S.;Kang, K.H.;Kim, S.K.;Yoon, K.H.;Song, J.;Park, I.J.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1555-1558
    • /
    • 2002
  • This paper presents deposition and characterizations of microcrystalline silicon(${\mu}c$-Si:H) films prepared by hot wire chemical vapor deposition at substrate temperature below $300^{\circ}C$. The $SiH_4$ Concentration$[F(SiH_4)/F(SiH_4)+F(H_2)]$ is critical parameter for the formation of Si films with microcrystalline phase. At 6% of silane concentration, deposited intrinsic ${\mu}c$-Si:H films shows sufficiently low dark conductivity and high photo sensitivity for solar cell applications. P-type ${\mu}c$-S:H films deposited by Hot-Wire CVD also shows good electrical properties by varying the rate of $B_2H_6$ to $SiH_4$ gas. The solar cells with structure of Al/nip ${\mu}c$-Si:H/TCO/glass was fabricated with sing1e chamber Hot-Wire CVD. About 3% solar efficiency was obtained and applicability of HWCVD for thin film solar cells was proven in this research.

  • PDF

The Properties of Passivation Films on Al2O3/SiNX Stack Layer in Crystalline Silicon Solar Cells (결정질 실리콘 태양전지의 Al2O3/SiNX 패시베이션 특성 분석)

  • Hyun, Ji Yeon;Song, In Seol;Kim, Jae Eun;Bae, Soohyun;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.5 no.2
    • /
    • pp.63-67
    • /
    • 2017
  • Aluminum oxide ($Al_2O_3$) film deposited by atomic layer deposition (ALD) is known to supply excellent surface passivation properties on crystalline Si surface. The quality of passivation layer is important for high-efficiency silicon solar cell. double-layer structures have many advantages over single-layer materials. $Al_2O_3/SiN_X$ passivation stacks have been widely adopted for high- efficiency silicon solar cells. The first layer, $Al_2O_3$, passivates the surface, while $SiN_X$ acts as a hydrogen source that saturates silicon dangling bonds during annealing treatment. We explored the properties on passivation film of $Al_2O_3/SiN_X$ stack layer with changing the conditions. For the post annealing temperature, it was found that $500^{\circ}C$ is the most suitable temperature to improvement surface passivation.

Low temperature growth of silicon thin film on sapphire substrate by liquid phase epitaxy for solar cell application (사파이어 기판을 사용한 태양전지용 실리콘 박막의 저온액상 에피탁시에 관한 연구)

  • Soo Hong Lee;Martin A. Green
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.2
    • /
    • pp.131-133
    • /
    • 1994
  • Deposition of silicon on pretreated sapphire substrates has been investigated by the liquid phase epitaxy method at low temperatures. An average 14 $\mu\textrm{m}$ thickness of silicon was grown over a large area on sapphire substrate originally coated with a much thinner silicon layer $[0.5 \mu\textrm{m} (100) Si/(1102) sapphire]$ at low temperatures from $(380^{\circ}C to 460^{\circ}C)$.

  • PDF

An Experimental Study on Relationship Between Temperature Change and Generation Performance of a-Si BIPV Window System (박막 BIPV창의 온도변화와 발전성능 상관관계에 관한 실측연구)

  • Kim, Bit-Na;Yoon, Jong-Ho;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.179-184
    • /
    • 2012
  • This research on building Integrated Photovoltaic System replacing windows and doors with amorphous silicon thin film PV windows and doors installing same exact mount on Mock-up. The windows and doors should be installed in different angle and bearing so that we can analyse the amount of electricity from them. The objective of the research is to evaluate and investigate the relationship between factors(intensity of solar radiation, PV window surface temperature, incidence angle, and sky conditions) that affects performance of PV window and performance. The range and method of this research is to establish monitoring system and analysis the data from the monitoring system to evaluate the performance of PV windows that have thin film of solar battery. We should evaluate the insolation according to the position of PV window, output, and surface temperature according to months and seasons so that we can figure out the relationship between these. And we should investigate the relationship between performance and efficiency according to incidence angle and sky condition so that we can figure out the correlation between factors and performance.