Browse > Article
http://dx.doi.org/10.4313/JKEM.2017.30.11.699

A Study on the Near Infrared Ray Wavelength Conversion Film for Improving Conversion Efficiency of Solar Cell  

Park, Byung Kyu (CS Energy Corporation)
Park, Gye Choon (Department of Electrical and Control Engineering, Mokpo National University)
Lee, Jin (Department of Electrical and Control Engineering, Mokpo National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.30, no.11, 2017 , pp. 699-704 More about this Journal
Abstract
The amount of electric power for photovoltaic power generation depends on the location of the power plant and the direction of solar cell. The solar cell controls the generation of solar power plants. Therefore, the structure of solar cell, manufacturing method, and optic technology were factors contributing to increased solar cell efficiency; however, the technical limit has been reached. Herein, we propose a new method to increase the solar cell efficiency using a wavelength conversion technology that converts ultraviolet and infrared rays, which are not effectively used in solar cells, into effective wavelength of solar cell. We used fluoride $Na(Ca)YF_4$ phosphor for wavelength conversion. Then, a wavelength-conversion fluorescent paste, prepared using an organic-silicon binder, was used to prepare a film that was applied to Si solar cells. It was confirmed that conversion efficiency improved by 5% or more.
Keywords
Solar cell; Wavelength conversion; Fluorescent paste; Conversion efficiency; Sheet;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. K. Liu, Photovoltaic Cell Devices and Its Application (Science Press, Beijing, 1980).
2 D. F. Wang, X. D. Zhang, Y. J. Liu, C. Y. Wu, C. S. Zhang, C. C. Wei, and Y. Zhao, Chin. Phys. B, 22, 027801 (2013). [DOI: https://doi.org/10.1088/1674-1056/22/2/027801]   DOI
3 A. C. Tropper, J. N. Carter, R.D.T. Lauder, D. C. Hanna, S. T. Davey, and D. Szebesta, J. Opt. Soc. Am. B, 11, 886 (1994). [DOI: https://doi.org/10.1364/JOSAB.11.000886]   DOI
4 T. Trupke, A. Shalav, B. S. Richards, P. Wurfel, and M. A. Green, Sol. Energy Mater. Sol. Cells, 90, 3327 (2006). [DOI: https://doi.org/10.1016/j.solmat.2005.09.021]   DOI
5 P. Gibart, F. Auzel, J. C. Guillaume, and K. Zahraman, Jpn. J. Appl. Phys., 35, 4401 (1996). [DOI: https://doi.org/10.1143/JJAP.35.4401]   DOI
6 A. Shalav, B. S. Richards, T. Trupke, K. W. Kramer, and H. U. Gudel, Appl. Phys. Lett., 86, 013505 (2005). [DOI: https://doi.org/10.1063/1.1844592]   DOI
7 G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, and L. H. Guo, Nano Lett., 4, 2191 (2004). [DOI: https://doi.org/10.1021/nl048680h]   DOI
8 G. K. Liu, H. Z. Zhuang, and X. Y. Chen, Nano Lett. 2, 535 (2002). [DOI: https://doi.org/10.1021/nl0255303]   DOI
9 X. Y. Chen, H. Z. Zhuang, and G. K. Liu, J. Appl. Phys., 94, 5559 (2003). [DOI: https://doi.org/10.1063/1.1614865]   DOI
10 G. K. Liu, X. Y. Chen, H. Z. Zhuang, S. Li, and R. S. Niedbala, J. Solid State Chem., 171, 123 (2003). [DOI: https://doi.org/10.1016/S0022-4596(02)00195-0]   DOI
11 J. F. Suyver, J. Grimm, K. W. Kramer, and H. U. Gudel, J. Lumin., 114, 53 (2005). [DOI: https://doi.org/10.1016/j.jlumin.2004.11.012]   DOI