• 제목/요약/키워드: Photovoltaic modules

검색결과 362건 처리시간 0.028초

가혹조건에서의 태양전지모듈 내구성 평가를 통한 최적의 시험조건 제안 (Suggestion of Long-term Life Time Test for PV Module in Highly Stressed Conditions)

  • 김경수;강기환;유권종;윤순길
    • 한국태양에너지학회 논문집
    • /
    • 제30권5호
    • /
    • pp.63-68
    • /
    • 2010
  • To guarantee life time more than 20 years for manufacturer without stopping photovoltaic(PV) system, it is really important to test the module in realistic time and condition compared to outside weather. In here, we tested PV modules in highly stressed condition compared to IEC standards. In IEC 61215 and IEC 61646 standards, damp-heat, thermal cycle(TC200) and mechanical test are main test items for evaluating long-term durability of PV module in controlled temperature and humidity condition. So in this paper, we have lengthened the test time for TC200 and damp-heat test and increased the loading stress on surface of module. Through this test, we can get some clue of proper the method for measuring realistic life cycle of PV modules and suggested the minimum time for PV test method. The detail description is specified as the following paper.

국내 태양광발전시스템의 최적 설치에 관한 연구 (A Study on the Optimal Installation of Solar Photovoltaic System in Korea)

  • 조덕기;강용혁;이의준;오정무
    • 한국태양에너지학회 논문집
    • /
    • 제24권3호
    • /
    • pp.19-25
    • /
    • 2004
  • The measured solar radiation incident on tilted surfaces by all directions has been widely used as important solar radiation data in installing photovoltaic modules. To maximize the incident beam radiation, the slope, which is the angle between the plane of the surface in question and the horizontal, an4 the solar azimuth angles are needed for these solar photovoltaic systems. This is because the performance of the solar photovoltaic systems is much affected by angle and direction of incident rays. Recognizing those factors mentioned above are of importance, actual experiment has been performed in this research to obtain the an91e of inclination with which the maximum incident rays can be absorbed. The results obtained in this research could be used in installing optimal photovoltaic modules.

슁글드 모듈 제작을 위한 고효율 실리콘 태양전지의 레이저 스크라이빙에 의한 영향 (Effect of Laser Scribing in High Efficiency Crystal Photovoltaic Cells to Produce Shingled Photovoltaic Module)

  • 이성은;박지수;오원제;이재형
    • 한국전기전자재료학회논문지
    • /
    • 제33권4호
    • /
    • pp.291-296
    • /
    • 2020
  • The high power of a shingled photovoltaic module can be attributed to its low cell-to-module loss. The production of high power modules in limited area requires high efficiency solar cells. Shingled photovoltaic modules can be made by divided solar cells, which can be produced by the laser scribing process. After dividing the 21% PERC cell using laser scribing, the efficiency decreased by approximately 0.35%. However, there was no change in the efficiency of the solar cell having relatively lower efficiency, because the laser scribing process induce higher heat damages in solar cells with high efficiency. To prove this phenomena, the J0 (leakage current density) of each cell was analyzed. It was found that the J0 of 21% PERC increased about 17 times between full and divided solar cell. However, the J0 of 20.2% PERC increased only about 2.5 times between full and divided solar cell.

태양광 모듈 개별 모니터링을 위한 무선 IoT센서 (Development of Wireless IoT Sensors for Individual Photovoltaic Module Monitoring)

  • 박종성;김창헌;이지원;김지현;유상혁;양범승
    • Current Photovoltaic Research
    • /
    • 제9권3호
    • /
    • pp.106-109
    • /
    • 2021
  • In order to perform photovoltaic (PV) operation and management (O&M) efficiently, individual PV module monitoring is becoming more important. In this research, we developed wireless IoT sensor which can monitor individual photovoltaic modules. This IoT sensor can detect the output voltage, current and module temperature of individual modules and provide monitored data by wireless communication. Measured voltage error was 1.23%, and it shows 16.6 dBM, 0.42sec and 7.1 mA for voltage, transmittance output, response time and mean power consumption, respectively. IoT sensors were demonstrated in the test field with real climate environment condition and each of 5 sensors showed precise results of voltage, current and temperature. Also, sensors were compared with commercial power-optimizers and showed result difference within 5%.

기후데이터 분석을 통한 태양광모듈의 내구성 평가 기준 제안 (Suggestion of PV Module Test Methods Based on Weathering Monitoring)

  • 김경수;윤재호
    • Current Photovoltaic Research
    • /
    • 제7권2호
    • /
    • pp.46-50
    • /
    • 2019
  • The photovoltaic (PV) system consists of solar cells, solar modules, inverters and peripherals. The related evaluation and certification are proceeding as standards published by the IEC (International Electrotechnical Commission) TC (Technical Committee) 82. In particular, PV module is a component that requires stable durability over 20 years, and evaluation in various external environments is very important. Currently, IEC 61215-based standards are being tested, but temperature, humidity, wind and solar radiation conditions are not considered in all areas. For this reason, various types of defects may occur depending on the installation area of the same photovoltaic module. In particular, the domestic climate (South Korea) is moderate. The various test methods proposed by IEC 61215 are appropriate, excessive, or insufficient, depending on environmental condition. In this paper, we analyze the climate data collection for one year to understand the vulnerability of this test method of PV modules. Through this, we propose a test method for PV module suitable for domestic climatic conditions and also propose a technical consideration for installation and design of PV system.

음영조건을 고려한 공동주택 옥상 태양광모듈의 배치계획 평가 연구 (Evaluation on the Photovoltaic Module Arrangement Planning Considering Shading Conditions in Apartment Buildings)

  • 이겨레;이윤선;임재한
    • 대한건축학회논문집:구조계
    • /
    • 제35권5호
    • /
    • pp.169-179
    • /
    • 2019
  • During the initial design stage of apartment complex, the photovoltaic(PV) system has been considered as an alternative of renewable energy system and planned to install at the rooftop floor level in general. The electric power generation characteristics can be influenced by the block layout, building orientation and roof top structure because of azimuth angle, tilt angle, and partial shading. This study aims to investigate power generation characteristics of photovoltaic system in apartment buildings by considering the partial shading conditions due to the block layout, building orientation and roof-top structures. For the photovoltaic module arrangement planning in rooftop floor level, shading areas were firstly analyzed due to the adjacent building structure. And the annual and seasonal power generation of PV system were analyzed through the PVsyst simulation results. The results show that shading period at the roof top surface can be increased due to the parapet and water tank. Initial design power capacity can be decreased by considering the daily insolation period and distance between PV modules through the shading simulation. As the number of PV modules decreases, the annual power generation can be decreased. However annual power generation per unit area of PV modules can be increased and performance ratio can be increased above 80%. Also the power generation of PV system can be critically affected by building orientation and the performance ratio can be drastically decreased in east-oriented buildings due to the shading problems caused by adjacent structures at roof top level such as parapet and water tank.

고출력 태양광 모듈을 위한 분할 셀 종류에 따른 슁글드 스트링 특성 시뮬레이션 (Simulation of Shingled String Characteristics Depending on Cell Strips Type for High Power Photovoltaic Modules)

  • 박지수;오원제;이재형
    • 한국전기전자재료학회논문지
    • /
    • 제33권1호
    • /
    • pp.10-15
    • /
    • 2020
  • Recently, with the increase in the use of urban solar power, solar modules are required to produce high power in limited areas. In this report, we proposed the fabrication of a high-power photovoltaic module using shingles technology, and developed accurate string characteristic simulations based on circuit modeling. By comparing the resistance components between the interconnected cells and the cell strips, the ECA resistance was determined to be 0.003 Ω. Based on the equivalent circuit of the modeled shingled string, string simulation was performed according to the type of cell strip. As a result, it was determined that the cell efficiency of the 4-cell strip was the highest at 19.66%, but the efficiency of the string simulated with the 6-cell strip was the highest at 20.48% in the string unit.

단상 인버터를 이용한 새로운 태양광 에너지 변환 시스템 구현 (A New Solar Energy Conversion System Implemented Using Single Phase Inverter)

  • 김실근;홍순일
    • 조명전기설비학회논문지
    • /
    • 제20권7호
    • /
    • pp.74-80
    • /
    • 2006
  • 본 논문은 새로운 태양광 에너지 변환 기술에 의한 연계형 단상 인버터 제어기술을 나타내었다. 최대전력 점 추적제어는 두 부스터 컨버터의 MOSFET 스위치 제어 발생회로에 기초하고 단상 인버터는 풀 브리지의 4개 IGBT 스위치에 의해 전류 추종제어 된다. PV 모듈의 발생전력 제어회로는 PV 모듈의 출력 전압, 전류 검출에 의해 최대전력 점 제어한다. 결국 PV 모듈 양단은 인버터 입력전압으로 낮은 리플 전압을 유지하고 출력은 증가한다. 제안한 태양광 인버터 시스템의 효과가 시뮬레이션과 실험을 통하여 입증되었다.

건물일체형 태양광발전 시스템의 발전성능 분석 (A Study on generation characteristics of building integrated Photovoltaic system)

  • 박재완;신우철;김대곤;윤종호
    • 한국태양에너지학회 논문집
    • /
    • 제33권3호
    • /
    • pp.75-81
    • /
    • 2013
  • In this study, we analyze the performance characteristics of Building Integrated Photovoltaic (BIPV) system of K Research Building which was designed with the aim of zero carbon building. In addition, BIPV system, which is consist of three modules; G to G(Glass to Glass), G to T(Glass to Tedlar/Crystal) and Amorphous, has 116.2kWp of total capacity, and is applied to wall, window, atrium and pagora on roof. Therefore, in this paper, our research team analyzed BIPV yield and generation characteristic. BIPV yield was 112,589kWh a year from January 2012 to December 2012. And after applying PV panels on the building, the power from the best setting angle, $30^{\circ}$, of panel was compared. In addition, when the PV was attached practically on the building, the generation power was analyzed. BIPV modules in this study the relationship between module setting angle, type of modules ect. and power characteristics plans to identify.

슁글드 모듈에서 경화조건에 따른 ECA 접합강도와 효율의 상관관계에 관한 연구 (A Study on Correlation Peel Strength and the Efficiency of Shingled Modules According to Curing Condition of Electrically Conductive Adhesives)

  • 전다영;손형진;문지연;조성현;김성현
    • Current Photovoltaic Research
    • /
    • 제9권2호
    • /
    • pp.31-35
    • /
    • 2021
  • Shingled module shows high ratio active area per total area due to more efficient packing without inactive space between cells. The module is fabricated by connecting the pre-cut cells into the string using electrically conductive adhesives (ECA). ECAs are used for electric and structural connections to fabricate the shingled modules. In this work, we investigated a correlation between ECA peel strength and the efficiency of pre-cut 5 cells module which are fabricated according to ECA interconnection conditions. The curing conditions are varied to determine whether ECA interconnection properties can affect module properties. As a result of the peel test, the highest peel strength was 1.27 N/mm in the condition of 170℃, the lowest peel strength was 0.89 N/mm in the condition of 130℃. The efficiency was almost constant regardless of the curing conditions at an average of 20%. However, the standard deviation of the fill factor increased as the adhesive strength decreased.