Browse > Article
http://dx.doi.org/10.4313/JKEM.2020.33.1.10

Simulation of Shingled String Characteristics Depending on Cell Strips Type for High Power Photovoltaic Modules  

Park, Ji Su (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Oh, Won Je (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Lee, Jae Hyeong (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.33, no.1, 2020 , pp. 10-15 More about this Journal
Abstract
Recently, with the increase in the use of urban solar power, solar modules are required to produce high power in limited areas. In this report, we proposed the fabrication of a high-power photovoltaic module using shingles technology, and developed accurate string characteristic simulations based on circuit modeling. By comparing the resistance components between the interconnected cells and the cell strips, the ECA resistance was determined to be 0.003 Ω. Based on the equivalent circuit of the modeled shingled string, string simulation was performed according to the type of cell strip. As a result, it was determined that the cell efficiency of the 4-cell strip was the highest at 19.66%, but the efficiency of the string simulated with the 6-cell strip was the highest at 20.48% in the string unit.
Keywords
Photovoltaic modules; Shingled string; ECA (electrically conductive adhesives); Laser scribing; Solar cell;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 The Export-Import Bank of Korea, Photovoltaic Industry Report for the First Quarter of 2019 (EXIM Bank, Seoul, Korea, 2019).
2 The Export-Import Bank of Korea, Photovoltaic Industry Trends for the Fourth Quarter of 2018 Quarterly Report (EXIM Bank, Seoul, Korea, 2019).
3 T. Meyer and J. Luther, Energy Convers. Manage., 45, 2639 (2004). [DOI: https://doi.org/10.1016/j.enconman.2003.12.023]   DOI
4 A. G. Olabi, Energy, 136, 1 (2017). [DOI: https://doi.org/10.1016/j.energy.2017.07.054]   DOI
5 J. J. Song, Y. S. Jeong, and S. H. Lee, J. Digital Convergence, 12, 243 (2014). [DOI: https://doi.org/10.14400/JDC.2014.12.3.243]
6 A. W. Blakers, J. Appl. Phys., 71, 5237 (1992). [DOI: https://doi.org/10.1063/1.350580]   DOI
7 N. Klasen, A. Mondon, A. Kraft, and U. Eitner, Proc. 7th Workshop on Metalization and Interconnection for Crystalline Silicon Solar Cells, 2017 (SSRN Electronic Journal, Konstanz, 2017) p. 1. [DOI: https://doi.org/10.2139/ssrn.3152478]
8 W. J. Oh, J. S. Park, S. H. Hwang, S. H. Lee, C. H. Jeong, and J. H. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 31, 290 (2018). [DOI: https://doi.org/10.4313/JKEM.2018.31.5.290]   DOI
9 W. J. Oh, J. S. Park, and J. H. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 32, 267 (2019). [DOI: https://doi.org/10.4313/JKEM.2019.32.4.267]   DOI
10 G. Cibira and M. Koscova, Appl. Surf. Sci., 312, 74 (2014). [DOI: https://doi.org/10.1016/j.apsusc.2014.05.080]   DOI
11 D.S.H. Chan and J.C.H. Phang, IEEE Trans. Electron Devices, 34, 286 (1987). [DOI: https://doi.org/10.1109/T-ED.1987.22920]   DOI
12 J. S. Park, S. H. Hwang, W. J. Oh, S. H. Lee, C. H. Jeong, and J. H. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 31, 295 (2018). [DOI: https://doi.org/10.4313/JKEM.2018.31.5.295]   DOI
13 R. J. Handy, Solid State Electron., 10, 765 (1967). [DOI: https://doi.org/10.1016/0038-1101(67)90159-1]   DOI
14 J. Wong, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, Tampa, USA, 2013) p. 933. [DOI: https://doi.org/10.1109/PVSC.2013.6744296]