• Title/Summary/Keyword: Photodetector

Search Result 242, Processing Time 0.019 seconds

Characteristics of a PMOSFET Photodetector for Highly-Sensitive Active Pixel Sensor (고감도 능동픽셀센서를 위한 PMOSFET 광검출기의 특성)

  • Seo, Sang-Ho;Park, Jae-Hyoun;Lee, June-Kyoo;Wang, In-Soo;Shin, Jang-Kyoo;Jo, Young-Chang;Kim, Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.149-155
    • /
    • 2003
  • A PMOSFET photodetector for highly-sensitive active pixel sensor(APS) is presented. This sensor uses 5V power supply and has been designed and fabricated using I-poly and 2-metal $1.5{\mu}m$ CMOS technology. The feature of a PMOSFET photodetector is that the polysilicon gate of the PMOSFET was connected to n-well, in order to increase the photo sensitivity. The designed MOS photodetector has similar $I_{DS}-V_{DS}$ characteristics with a standard MOSFET. One dimensional image sensor with 16 pixels based on the PMOSFET photodetector has also been designed and fabricated. Unit pixel of the designed sensor consists of a PMOSFET photodetector and 4 NMOSFETs. Unit pixel area is $86{\mu}m{\times}90.5{\mu}m$ and its fill factor is about 12%.

Adjusting the Sensitivity of an Active Pixel Sensor Using a Gate/Body-Tied P-Channel Metal-Oxide Semiconductor Field-Effect Transistor-Type Photodetector With a Transfer Gate (전송 게이트가 내장된 Gate/Body-Tied P-Channel Metal-Oxide Semiconductor Field-Effect Transistor 구조 광 검출기를 이용한 감도 가변형 능동 화소 센서)

  • Jang, Juneyoung;Lee, Jewon;Kwen, Hyeunwoo;Seo, Sang-Ho;Choi, Pyung;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.114-118
    • /
    • 2021
  • In this study, the sensitivity of an active pixel sensor (APS) was adjusted by employing a gate/body-tied (GBT) p-channel metal-oxide semiconductor field-effect transistor (PMOSFET)-type photodetector with a transfer gate. A GBT PMOSFET-type photodetector can amplify the photocurrent generated by light. Consequently, APSs that incorporate GBT PMOSFET-type photodetectors are more sensitive than those APSs that are based on p-n junctions. In this study, a transfer gate was added to the conventional GBT PMOSFET-type photodetector. Such a photodetector can adjust the sensitivity of the APS by controlling the amount of charge transmitted from the drain to the floating diffusion node according to the voltage of the transfer gate. The results obtained from conducted simulations and measurements corroborate that, the sensitivity of an APS, which incorporates a GBT PMOSFET-type photodetector with a built-in transfer gate, can be adjusted according to the voltage of the transfer gate. Furthermore, the chip was fabricated by employing the standard 0.35 ㎛ complementary metal-oxide semiconductor (CMOS) technology, and the variable sensitivity of the APS was thereby experimentally verified.

Shortwave Infrared Photodetector based on PbS Quantum Dots for Eye-Safety Lidar Sensors (Eye safety 라이다 센서용 황화납 양자점 기반 SWIR photodetector 개발)

  • Suji Choi;JinBeom Kwon;Yuntae Ha;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.285-289
    • /
    • 2023
  • Recently, the demand for lidar systems for autonomous driving is increasing, and research on Shortwave Infrared(SWIR) photodetectors for this purpose is being actively conducted. Most SWIR photodetectors currently being developed are based on InGaAs, and have the disadvantages of complex processes, high prices, and limitations in research due to monopoly. In addition, current SWIR photodetectors use lasers in the 905 nm wavelength band, which can pass through the pupil and cause damage to the retina. Therefore, it is required to develop a SWIR photodetector using a wavelength band of 1400 nm or more to be safe for human eyes, and to develop a material that can replace the proprietary InGaAs. PbS QDs are group 4-6 compound semiconductors whose absorption wavelength band can be adjusted from 1000 to 2700 nm, and have the advantage of being simple to process. Therefore, in this study, PbS QDs having an absorption wavelength peak of 1415 nm were synthesized, and a SWIR photodetector was fabricated using this. In addition, the photodetector's responsivity was improved by applying P3HT and ZnO NPs to improve electron hole mobility. As a result of the experiment, it was confirmed that the synthesized PbS QDs had excellent FWHM characteristics compared to commercial PbS QDs, and it was confirmed that the photodetector had a maximum current change of about 1.6 times.

SnS-embedded High Performing and Transparent UV Photodetector (SnS 기반의 고성능 투명 UV 광검출기)

  • Park, Wang-Hee;Ban, Dong-Kyun;Kim, Hyunki;Kim, Hong-Sik;Patel, Malkeshkumar;Yoo, Jeong Hee;Kim, Joondong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.7
    • /
    • pp.445-448
    • /
    • 2016
  • Transparent UV photodetector was achieved by using wide bandgap metal oxide materials. In order to realize transparent heterojunction UV photodetector, n-type ZnO and p-type NiO metal oxide materials were employed. High light-absorbing SnS layer was inserted into the n-ZnO and p-NiO layers. High-performing UV photodetector was realized by ZnO/SnS/NiO/ITO structures to provide extremely fast response times (Fall time: $7{\mu}s$ and rise time: $13{\mu}s$) and high rectifying ratio. The use of functional SnS-embedded photodetector would provide a route for high functional photoelectric devices.

CMOS Binary Image Sensor with Gate/Body-Tied PMOSFET-Type Photodetector for Low-Power and Low-Noise Operation

  • Lee, Junwoo;Choi, Byoung-Soo;Seong, Donghyun;Lee, Jewon;Kim, Sang-Hwan;Lee, Jimin;Shin, Jang-Kyoo;Choi, Pyung
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.362-367
    • /
    • 2018
  • A complementary metal oxide semiconductor (CMOS) binary image sensor is proposed for low-power and low-noise operation. The proposed binary image sensor has the advantages of reduced power consumption and fixed pattern noise (FPN). A gate/body-tied (GBT) p-channel metal-oxide-semiconductor field-effect transistor (PMOSFET)-type photodetector is used as the proposed CMOS binary image sensor. The GBT PMOSFET-type photodetector has a floating gate that amplifies the photocurrent generated by incident light. Therefore, the sensitivity of the GBT PMOSFET-type photodetector is higher than that of other photodetectors. The proposed CMOS binary image sensor consists of a pixel array with $394(H){\times}250(V)$ pixels, scanners, bias circuits, and column parallel readout circuits for binary image processing. The proposed CMOS binary image sensor was analyzed by simulation. Using the dynamic comparator, a power consumption reduction of approximately 99.7% was achieved, and this performance was verified by the simulation by comparing the results with those of a two-stage comparator. Also, it was confirmed using simulation that the FPN of the proposed CMOS binary image sensor was successfully reduced by use of the double sampling process.

Effects of Optically-modulated Metal-graphene Contact on the Photoresponsivity of Graphene Photodetectors (빛에 의해 변조되는 금속-그래핀 컨택이 그래핀 포토디텍터의 광응답도에 미치는 영향)

  • Lee, Chang-Ju;Shim, Jae Hoon;Park, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.117-120
    • /
    • 2019
  • Graphene is recognized as a promising material for silicon photonics, since it has a wide optical-window that entirely covers the optical communication wavelength region ($1.3{\sim}1.6-{\mu}m$) and extremely high-carrier mobility that makes it possible to fabricate the high-speed photodetectors. However, the maximum absorbance of monolayer graphene is only 2.3%, which limits the photoresponse characteristics of graphene photodetectors. As a result, a low photoresponsivity of graphene photodetector is a critical issue limiting the use of graphene photodetectors in the optical communications field. In this paper, we investigated effects of optically-modulated metal-graphene contact on the photoresponsivity of graphene photodetectors. The optical modulation of the contact resistance mainly determined the photoresponse characteristics of graphene photodetectors. The Ni-contact graphene photodetector which has a characteristic of the significant optical modulation of metal-graphene contact showed a higher photoresponsivity than the Pd-contact device. This work will provide a way to improve the photoresponse characteristics of graphene-based photodetector and contribute to the development of high-speed/high-responsivity graphene photodetector.

Realization of Readout Circuit Through Integrator to Average MCT Photodetector Signals of Noncontact Chemical Agent Detector (비접촉 화학작용제 검출기의 MCT 광검출기를 위한 적분기 기반의 리드아웃 회로 구현)

  • Park, Jae-Hyoun
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.115-119
    • /
    • 2022
  • A readout circuit for a mercury-cadmium-telluride (MCT)-amplified mid-wave infrared (IR) photodetector was realized and applied to noncontact chemical agent detectors based on a quantum cascade laser (QCL). The QCL emitted 250 times for each wavelength in 0.2-㎛ steps from 8 to 12 ㎛ with a frequency of 100 kHz and duty ratio of 10%. Because of the nonconstant QCL emission power during on-duty, averaging the photodetector signals is essential. Averaging can be performed in digital back-end processing through a high-speed analog-to-digital converter (ADC) or in analog front-end processing through an integrator circuit. In addition, it should be considered that the 250 IR data points should be completely transferred to a PC during each wavelength tuning period of the QCL. To average and minimize the IR data, we designed a readout circuit using the analog front-end processing method. The proposed readout circuit consisted of a switched-capacitor integrator, voltage level shifter, relatively low-speed analog-to-digital converter, and micro-control unit. We confirmed that the MCT photodetector signal according to the QCL source can be accurately read and transferred to the PC without omissions.

6.25-Gb/s Optical Receiver Using A CMOS-Compatible Si Avalanche Photodetector

  • Kang, Hyo-Soon;Lee, Myung-Jae;Choi, Woo-Young
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.217-220
    • /
    • 2008
  • An optical receiver using a CMOS-compatible avalanche photodetector (CMOS-APD) is demonstrated. The CMOS-APD is fabricated with $0.18{\mu}m$ standard CMOS technology and the optical receiver is implemented by using the CMOS-APD and a transimpedance amplifier on a board. The optical receiver can detect 6.25-Gb/s data with the help of the series inductive peaking effect.

Process Considerations for 80-GHz High-Performance p-i-n Silicon Photodetector for Optical Interconnect

  • Cho, Seong-Jae;Kim, Hyung-Jin;Sun, Min-Chul;Park, Byung-Gook;Harris, James S. Jr.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.3
    • /
    • pp.370-376
    • /
    • 2012
  • In this work, design considerations for high-performance silicon photodetector are thoroughly investi- gated. Besides the critical dimensions of device, guidelines for process architecture are suggested. Abiding by those criteria for improving both direct-current (DC) and alternating-current (AC) perfor- mances, a high-speed low-operation power silicon photodetector based on p-i-n structure for optical interconnect has been designed by device simulation. An $f_{-3dB}$ of 80 GHz at an operating voltage of 1 V was obtained.

Influence of Trap Passivation by Hydrogen on the Electrical Properties of Polysilicon-Based MSM Photodetector

  • Lee, Jae-Sung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.6
    • /
    • pp.316-319
    • /
    • 2017
  • A new approach to improving the electrical characteristics and optical response of a polysilicon-based metal-semiconductor-metal (MSM) photodetector is proposed. To understand the cause of current restriction in the MSM photodetector, modified trap mechanisms are suggested, which include interfacial electron traps at the metal/polysilicon interface and silicon dangling bonds between silicon crystallite grains. Those traps were passivated using hydrogen ion implantation with subsequent post-annealing. Photodetectors that were ion-implanted under optima conditions exhibited improved photoconductivity and reduced dark current instability, implying that the hydrogen bonds in the polysilicon influence the simultaneous decreases in the density of dangling bonds at grain boundaries and the trapped positive charges at the contact interface.