Browse > Article
http://dx.doi.org/10.4313/JKEM.2016.29.7.445

SnS-embedded High Performing and Transparent UV Photodetector  

Park, Wang-Hee (Department of Electrical Engineering, Incheon National University)
Ban, Dong-Kyun (Department of Electrical Engineering, Incheon National University)
Kim, Hyunki (Department of Electrical Engineering, Incheon National University)
Kim, Hong-Sik (Department of Electrical Engineering, Incheon National University)
Patel, Malkeshkumar (Department of Electrical Engineering, Incheon National University)
Yoo, Jeong Hee (Department of Electrical Engineering, Incheon National University)
Kim, Joondong (Department of Electrical Engineering, Incheon National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.29, no.7, 2016 , pp. 445-448 More about this Journal
Abstract
Transparent UV photodetector was achieved by using wide bandgap metal oxide materials. In order to realize transparent heterojunction UV photodetector, n-type ZnO and p-type NiO metal oxide materials were employed. High light-absorbing SnS layer was inserted into the n-ZnO and p-NiO layers. High-performing UV photodetector was realized by ZnO/SnS/NiO/ITO structures to provide extremely fast response times (Fall time: $7{\mu}s$ and rise time: $13{\mu}s$) and high rectifying ratio. The use of functional SnS-embedded photodetector would provide a route for high functional photoelectric devices.
Keywords
ITO; AZO; NiO; Absorbance; SnS; Photoresponse ratio;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. Ristov, G. Sinadinovski, M. Mitreski, and M. Ristova, Sol. Energy Mater. Sol. Cells, 69, 17 (2001). [DOI: http://dx.doi.org/10.1016/S0927-0248(00)00355-X]   DOI
2 B. Ghosh, M. Das, P. Banerjee, and S. Das, Sol. Energy Mater. Sol. Cells, 92, 1099 (2008). [DOI: http://dx.doi.org/10.1016/j.solmat.2008.03.016]   DOI
3 B. Ghosh, M. Das, P. Banerjee, and S. Das, Semicond. Sci. Technol., 24, 025024 (2009). [DOI: http://dx.doi.org/10.1088/0268-1242/24/2/025024]   DOI
4 H. Kim, H. Kim, M. Patel, and J. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 28, 808 (2015).
5 T. Hirano, T. Shimizu, K. Yoshida, and M. Sugiyama, 37th IEEE Photovoltaic Specialists Conf. (PVSC) (Seattle, USA, 2011) p. 001280.
6 M. Patel, H. S. Kim, and J. D. Kim, Adv. Electron. Mater., 1, 1500232 (2015).   DOI
7 Y. Sun, Z. Sun, S. Gao, H. Cheng, Q. Liu, and F. Lei, Adv. Energy Mater., 4, 1300611 (2014).   DOI
8 M. Patel, I. Mukhopadhyay, and A. Ray, Opt. Mater. (Amst), 35, 1693 (2013). [DOI: http://dx.doi.org/10.1016/j.optmat.2013.04.034]   DOI
9 M. Patel and A. Ray, RSC Adv., 4, 39343 (2014). [DOI: http://dx.doi.org/10.1039/C4RA06219A]   DOI
10 F. Ran, Z. Xiao, Y. Toda, H. Hiramatsu, and H. Hosono, Sci. Rep., 5, 10428 (2015). [DOI: http://dx.doi.org/10.1038/srep10428]   DOI
11 M. Sharon and K. Basavaswara, Sol. Cells, 25, 97 (1988). [DOI: http://dx.doi.org/10.1016/0379-6787(88)90015-4]   DOI
12 M. Ristova and M. Ristov, Sol. Energy Mater. Sol. Cells, 53, 95 (1988). [DOI: http://dx.doi.org/10.1016/S0927-0248(98)00011-7]