• Title/Summary/Keyword: Phase-locked loops

Search Result 52, Processing Time 0.023 seconds

A Canonical Small-Signal Linearized Model and a Performance Evaluation of the SRF-PLL in Three Phase Grid Inverter System

  • Mao, Peng;Zhang, Mao;Zhang, Weiping
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.1057-1068
    • /
    • 2014
  • Phase-locked loops (PLL) based on the synchronous reference frame (SRF-PLL) have recently become the most widely-used for grid synchronization in three phase grid-connected inverters. However, it is difficult to study their performance since they are nonlinear systems. To estimate the performances of a SRF-PLL, a canonical small-signal linearized model has been developed in this paper. Based on the proposed model, several significant specifications of a SRF-PLL, such as the capture time, capture rang, bandwidth, the product of capture time and bandwidth, and steady-state error have been investigated. Finally, a noise model of a SRF-PLL has been put forward to analyze the noise rejection ability by computing the SNR (signal-to-noise ratio) of a SRF-PLL. Several simulation and experimental results have been provided to verify and validate the obtained conclusions. Although the proposed model and analysis method are based on a SRF-PLL, they are also suitable for analyzing other types of PLLs.

Speed Estimation of Diesel-Generator Systems Based on Multiple SOGI-FLLs (다중 SOGI-FLL 기반 엔진-발전기 시스템의 속도 추정)

  • Dao, Ngoc Dat;Lee, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.63-64
    • /
    • 2017
  • This paper proposes a speed estimator for sensorless control of diesel-generator (genset) systems, where the speed of the genset is calculated from the back-EMF frequency of the generator. The back-EMF frequency is extracted from a phase output current by using multiple second-order generalized integrators (SOGIs) connected in parallel and series and separated frequency-locked loops. The proposed method (PS-SOGI-FLL) is able to estimate the fundamental frequency in the distorted output current with high accuracy and strong robustness. Simulation results are shown to verify the validity of the proposed method.

  • PDF

Design of a Transceiver Transmitting Power, Clock, and Data over a Single Optical Fiber for Future Automotive Network System

  • Bae, Woorham;Ju, Haram;Jeong, Deog-Kyoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.1
    • /
    • pp.48-55
    • /
    • 2017
  • This paper proposes a new link structure that transmits power, clock, and data through a single optical fiber for a future automotive network. A pulse-position modulation (PPM) technique is adopted to guarantee a DC-balanced signal for robust power transmission regardless of transmitted data pattern. Further, circuit implementations and theoretical analyses for the proposed PPM transceiver are described in this paper. A prototype transceiver fabricated in 65-nm CMOS technology, is used to verify the PPM signaling part of the proposed system. The prototype achieves a $10^{-13}$ bit-error rate and 0.188-UI high frequency jitter tolerance while consuming 14 mW at 800 Mb/s.

Fractional-N Frequency Synthesis: Overview and Practical Aspects with FIR-Embedded Design

  • Rhee, Woogeun;Xu, Ni;Zhou, Bo;Wang, Zhihua
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.2
    • /
    • pp.170-183
    • /
    • 2013
  • This paper gives an overview of fractional-N phase-locked loops (PLLs) with practical design perspectives focusing on a ${\Delta}{\Sigma}$ modulation technique and a finite-impulse response (FIR) filtering method. Spur generation and nonlinearity issues in the ${\Delta}{\Sigma}$ fractional-N PLLs are discussed with simulation and hardware results. High-order ${\Delta}{\Sigma}$ modulation with FIR-embedded filtering is considered for low noise frequency generation. Also, various architectures of finite-modulo fractional-N PLLs are reviewed for alternative low cost design, and the FIR filtering technique is shown to be useful for spur reduction in the finite-modulo fractional-N PLL design.

20 MHz-3 GHz Programmable Chirp Spread Spectrum Generator for a Wideband Radio Jamming Application

  • Kim, Sun-Ryoul;Ryu, Hyuk;Ha, Keum-Won;Kim, Jeong-Geun;Baek, Donghyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.771-776
    • /
    • 2014
  • In this paper, an agile programmable chirp spread spectrum generator for wideband frequency-jamming applications from 20 MHz to 3 GHz is proposed. A frequency-mixing architecture using two voltage-controlled oscillators is used to achieve a wideband operating frequency range, and the direct digital synthesizer (DDS)-based chirping method with a two-point modulation technique is employed to provide a programmable and consistent chirp bandwidth. The proposed signal generator provides the various programmable FM signals from 20 MHz to 3 GHz with a modulation bandwidth from 0 to 400 MHz. The prototype successfully demonstrates arbitrary sequential jamming operation with a fast band-to-band hopping time of < 10 ${\mu}sec$.

Effect of surface roughness on the quality of silicon epitaxial film grown after UV-irradiated gas phase cleaning

  • Kwon, Sung-Ku;Kim, Du-Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.5
    • /
    • pp.504-509
    • /
    • 1999
  • In-situ cleaning and subsequent silicon epitaxial film growth were performed in a load-locked reactor equipped with Hg-grid UV lamp and PBN heater to obtain the smooth and contaminant-free underlying surface and develop low-temperature epitaxial film growth process. The removals of organic and native oxide were investigated using UV-excited $O_2$ and $NF_{3}/H_{2}$, and the effect of the surface condition was examined on the quality of silicon epitaxial film grown at temperature as low as $750^{\circ}C$. UV-excited gas phase cleaning was found to be effective in removing the organic and native oxide successfully providing a smooth surface with RMS roughness of 0.5$\AA$ at optimal condition. Crystalline quality of epitaxial film was determined by smoothness of cleaned surface and the presence of native oxide and impurity. Crystalline defects such as dislocation loops or voids due to the surface roughness were observed by XTEM.

  • PDF

Phase Control Loop Design based on Second Order PLL Loop Filter for Solid Type High Q-factor Resonant Gyroscope (고체형 정밀 공진 자이로스코프를 위한 이차 PLL 루프필터 기반 위상제어루프 설계)

  • Park, Sang-Jun;Yong, Ki-Ryeok;Lee, Young-Jae;Sung, Sang-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.546-554
    • /
    • 2012
  • This paper suggests a design method of an improved phase control loop for tracking resonant frequency of solid type precision resonant gyroscope. In general, a low cost MEMS gyroscope adapts the automatic gain control loops by taking a velocity feedback configuration. This control technique for controlling the resonance amplitude shows a stable performance. But in terms of resonant frequency tracking, this technique shows an unreliable performance due to phase errors because the AGC method cannot provide an active phase control capability. For the resonance control loop design of a solid type precision resonant gyroscope, this paper presents a phase domain control loop based on linear PLL (Phase Locked Loop). In particular, phase control loop is exploited using a higher order PLL loop filter by extending the first order active PI (Proportion-Integral) filter. For the verification of the proposed loop design, a hemispherical resonant gyroscope is considered. Numerical simulation result demonstrates that the control loop shows a robust performance against initial resonant frequency gap between resonator and voltage control oscillator. Also it is verified that the designed loop achieves a stable oscillation even under the initial frequency gap condition of about 25 Hz, which amounts to about 1% of the natural frequency of a conventional resonant gyroscope.

Design of Fractional-N Digital PLL for IoT Application (IoT 어플리케이션을 위한 분수분주형 디지털 위상고정루프 설계)

  • Kim, Shinwoong
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.800-804
    • /
    • 2019
  • This paper presents a dual-loop sub-sampling digital PLL for a 2.4 GHz IoT applications. The PLL initially performs a divider-based coarse lock and switches to a divider-less fine sub-sampling lock. It achieves a low in-band phase noise performance by enabling the use of a high resolution time-to-digital converter (TDC) and a digital-to-time converter (DTC) in a selected timing range. To remove the difference between the phase offsets of the coarse and fine loops, a phase offset calibration scheme is proposed. The phase offset of the fine loop is estimated during the coarse lock and reflected in the coarse lock process, resulting in a smooth transition to the fine lock with a stable fast settling. The proposed digital PLL is designed by SystemVerilog modeling and Verilog-HDL and fully verified with simulations.

A 2.496 Gb/s Reference-less Dual Loop Clock and Data Recovery Circuit for MIPI M-PHY (2.496Gb/s MIPI M-PHY를 위한 기준 클록이 없는 이중 루프 클록 데이터 복원 회로)

  • Kim, Yeong-Woong;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.899-905
    • /
    • 2017
  • This paper presents a reference-less dual loop clock and data recovery (CDR) circuit that supports a data rate of 2.496 Gb/s for the mobile industry processor interface (MIPI) M-PHY. An adaptive loop bandwidth scheme is used to implement the fast lock time maintaining a low time jitter. To this scheme, the proposed CDR consists of two loops for a frequency locked loop and a phase locked loop. The proposed 2.496 Gb/s reference-less dual loop CDR is designed using a 65 nm CMOS process with 1.2 V supply voltage. The simulated peak-to-peak jitter of output clock is 9.26 ps for the input data of 2.496 Gb/s pseudo-random binary sequence (PRBS) 15. The active area and power consumption of the implemented CDR are $470{\times}400{\mu}m^2$ and 6.49 mW, respectively.

A Feed-forward Method for Reducing Current Mismatch in Charge Pumps (전하 펌프의 전류 부정합 감소를 위한 피드포워드 방식)

  • Lee, Jae-Hwan;Jeong, Hang-Geun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.1
    • /
    • pp.63-67
    • /
    • 2009
  • Current mismatch in a charge pump causes degradation in spectral purity of the phase locked loops(PLLs), such as reference spurs. The current mismatch can be reduced by increasing the output resistance of the charge pump, as in a cascoded output stage. However as the supply voltage is lowered, it is hard to stack transistors. In this paper, a new method for reducing the current mismatch is proposed. The proposed method is based on a feed-forward compensation for the channel length modulation effect of the output stage. The new method has been demonstrated through simulations on typical $0.18{\mu}m$ CMOS circuits.