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Abstract—This paper proposes a new link structure 
that transmits power, clock, and data through a single 
optical fiber for a future automotive network. A pulse-
position modulation (PPM) technique is adopted to 
guarantee a DC-balanced signal for robust power 
transmission regardless of transmitted data pattern. 
Further, circuit implementations and theoretical 
analyses for the proposed PPM transceiver are 
described in this paper. A prototype transceiver 
fabricated in 65-nm CMOS technology, is used to 
verify the PPM signaling part of the proposed system. 
The prototype achieves a 10-13 bit-error rate and 
0.188-UI high frequency jitter tolerance while 
consuming 14 mW at 800 Mb/s.    
 
Index Terms—Automotive network, DC balancing, 
jitter tolerance, phase-locked loops, pulse-position 
modulation    

I. INTRODUCTION 

Owing to the rapid growth in the number of devices 
connected to the Internet, the digital data created, 
replicated, and consumed in the world is increasing 
explosively. As estimated in [1, 2], the amount of the 
digital data will double every two years and will be as 
large as 40 Zettabyte by 2020, while the number of 
connected devices will be more than 30 billion. The 

automotive industry will account for a large portion of 
this trend. In [3], it is expected that by 2025, 100 % of 
vehicles will be connected to the outside world though a 
cellular network. Moreover, 75 % of vehicles sold 
annually around the world will be autonomous by 2035, 
according to the forecast in [4]. As more and more 
connected devices are placed in a vehicle, they will 
create even more data, increasing the need for 
communication pathways.  

Automotive networks for infotainment and advanced 
driving assistance system (ADAS) currently require a 
communication bandwidth up to hundreds of Mb/s [5]. 
Media Oriented System Transport (MOST) provides data 
transmission up to 150 Mb/s for automotive networks 
using optical fibers. However, it is estimated that the 
required data rate will reach an era of Gb/s for future 
vehicles. Serial link technology offers the best solution 
for high data rate while satisfying the reliability metrics 
required in automotive applications. To build a high-
speed data transmission and recovery system, an 
additional clock line or a bulky crystal oscillator is 
required [6]. In [7], a reference-less data recovery 
scheme was proposed; however, it required a power 
hungry circuit and a data encoding scheme, which 
severely degraded the link efficiency. Because the 
number of links is proportional to that of the connected 
devices, the wire count and energy efficiency per link 
should be minimized.  

Power supply is another important issue. Along with 
the data transmission wire, an additional power line is 
used in the legacy automotive network as shown in Fig. 
1(a) [8]. As expected in [3, 4], the increasing number of 
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devices in vehicles introduces the increase of 
electromagnetic interference (EMI) and weight of the 
power line, which causes severe challenges in the legacy 
metallic powered network [5]. Optically powered 
networks can be a solution to overcome the 
aforementioned power line issue [9-11].  

In this work, we propose a transmission concept and 
circuit implementation for transmitting power, clock, and 
data over a single optical fiber using the pulse-position 
modulation (PPM) signaling described in [12]. The 
proposed scheme minimizes the wire count while 
offering robust data and power transmission. Fig. 1(b) 
shows the conceptual automotive network incorporating 
the proposed scheme. A prototype IC for verifying the 
signaling functionality of the proposed architecture is 
fabricated in 65-nm CMOS technology.  

The remainder of this paper is organized as follows. 
Section II describes the proposed signaling and 
architecture. Section III gives details on circuit 

implementation for the proposed signaling. Section IV 
presents the measurement results from a prototype chip. 
Finally, the conclusion is provided in Section V. 

II. PROPOSED ARCHITECTURE 

Along with the optical power delivery technology, 
which is introduced in Section I, the silicon photonics 
technology is a promising solution for future automotive 
networks based on fiber-optic communication. CMOS 
circuits, such as a vertical-cavity surface-emitting laser 
(VCSELs) driver, an optical modulator driver, and a 
trans-impedance amplifier (TIA) developed in prior 
works [13-15], are very useful for the optically connected 
automotive networks. The convergence of optical power 
delivery and silicon photonics can overcome the issues 
described in Section I; this work proposes a key 
technology for realizing the convergence.  

Fig. 2(a) shows the concept of the proposed link for an 
automotive network. In conventional structures, the data 
and clock are transmitted over individual wires along 
with a separate power line. In the proposed structure, the 
data, clock, and power are transmitted over a single 
optical fiber. The signaling scheme to realize the 
proposed structure is shown in Fig. 2(b). When a light 
with a constant optical power is transmitted, only the 
power is delivered. If the optical power of the light is 
altered between two levels periodically, the timing 
information can also be transmitted. The DC and AC 
components of the signal can be used as power and clock 
for the receiver, respectively. Moreover, data can be 
embedded by modulating the clock, as proposed in 
literatures [16-18].  

The most popular modulation scheme is a so-called 
clock-edge modulation (CEM), or pulse-width 
modulation (PWM). In the CEM scheme, only the falling 
edge of the clock is modulated while the rising edge 
remains fixed. Therefore, the rising edge provides precise 
timing information, while the falling edge contains data. 
However, CEM has a severe drawback, and so is not an 
ideal method for this proposed automotive link. Because 
the DC level of the optical signal is used for power 
delivery, it should optimally be maintained constant--
regardless of the data patterns which are being 
transmitted. However, the DC component of a CEM 
signal varies with consecutive ones or zeros, as shown in 
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Fig. 1. Power and signal lines of (a) the conventional MOST 
network system, (b) the proposed automotive network system. 
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Fig. 3.  
In contrast, the PPM scheme provides a perfectly DC-

balanced signal because the duty-cycle of the clock is not 
modulated as shown in Fig. 3. For this reason, the PPM 
scheme is used to embed the data into the clock in this 
work.  

III. CIRCUIT IMPLEMENTATION 

This section focusses on circuit implementation for the 
data and clock transmission part, based on the prototype 
transceiver IC presented in [12]. The prototype is 
composed of a PPM transmitter and a PPM receiver, both 
of which are integrated in the same chip. In addition to 
the circuit implementation, a theoretical jitter tolerance 
of the PPM receiver is derived. A prototype including the 
optical power delivery part is under development. 

 
1. PPM Transmitter 

 
The PPM transmitter consists of a PPM modulator and 

an output driver. Fig. 4 shows the block diagram of the 
proposed PPM modulator. A phase-locked loop (PLL) 
based on a ring oscillator is used to generate a multi-
phase clock with minimal hardware overhead. A 2:1 
multiplexer (MUX) selects one of the clock phases 
according to the binary data to be modulated into the 
clock. In order to simplify the design, a 90°-spaced 
multi-phase clock is used in this work. The binary data 
which drives the MUX is retimed with the falling edge of 
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Fig. 2. (a) The proposed link compared to the conventional 
link, (b) the proposed signaling. 
 

 

Fig. 3. Comparison of clock edge modulation and pulse 
position modulation.  
 

 

Fig. 4. Block diagram of the proposed PPM modulator.  
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clkq to avoid a glitch by placing the data transition in the 
region where both clki and clkq have a ‘low’ value. A P-
over-N voltage-mode (VM) driver is used to provide an 
output impedance of 50 W and a large voltage swing. The 
output impedance of the VM driver is calibrated using 
two replica-feedback impedance regulators described in 
[19]. 

 
2. PPM Receiver 

 
The main function of the PPM receiver is clock and 

data recovery (CDR) from the PPM signal. The proposed 
CDR circuit is composed of a PLL and a flip-flop as 
illustrated in Fig. 6. The PLL recovers a demodulated 
clock by averaging the modulated pulse position. 
Because of the low-pass filtering nature of the PLL, the 
phase of the recovered clock is located at the middle of 
the pulse positions of the modulated clock corresponding 
to ‘1’ and ‘0’. By sampling the modulated clock with the 
recovered clock, the PPM data can be recovered to the 
original binary data, as shown in the timing diagram 
shown in Fig. 6. Because jitter tolerance is the most 
important performance metric of a wireline receiver, it is 
necessary to derive an analytic jitter tolerance in a 
receiver design. The analytic jitter tolerances for an 
embedded-clock receiver, a forwarded-clock receiver, 
and a CEM receiver are derived in [20, 6, 16], 
respectively. In this paper, an analytic derivation of the 
jitter tolerance of a PPM receiver is described. Fig. 7(a) 
shows a sampling timing model of a PPM receiver when 
a sinusoidal jitter is applied to the input. Because the 

PLL attenuates the amplitude of the jitter depending on 
the transfer function of the PLL (HPLL), the recovered 
clock cannot track the jitter. As a result, the sampling 
margin is degraded. The jitter profile of a PPM receiver 
is depicted in Fig. 7(b), where fj, Aj, and Emax denote 
jitter frequency, jitter amplitude, and maximum timing 
error, respectively. The timing error that corresponds to 
the amount of the sampling margin degradation is 
expressed as 
 

( ) { }( ) ( ) cos 2 | ( ) | cos 2Mclk Rclk j j PLL j j jJ t J t A f t H f A f tp p- = - . 
  (1) 
 

Because the maximum timing error is occurred when 
the absolute value of the cosine term is 1, Emax and the 
condition for an error-free operation becomes  
 

 max

1| ( ) |
8j PLL j jE A H f A UI= - < , (2) 

 
when all the non-ideal conditions are neglected. If we 
assume that HPLL is a first-order low-pass filter for 
simplicity, the jitter tolerance is achieved from (2) as 

 

Fig. 6. Proposed PPM demodulator and timing diagram of the 
demodulator.  
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(b) 

Fig. 7. (a) Sampling timing margin of the PPM receiver with a 
sinusoidal jitter, (b) sinusoidal jitter profile of the PPM 
receiver.  
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where fBW is a 3-dB cut-off frequency of the PLL. We 
can introduce a coefficient k (0 < k < 1), which reflects 
the non-ideal conditions such as a finite signal-to-noise 
ratio (SNR), a random phase noise, and some data-
dependent effects. Then (3) becomes as  
 

 { }
2

2
2

1 ( / )
2

4 1 ( / ) 1

j BW
P P j

j BW

k f f
J A

f f

+
= <

+ -
. (4) 

IV. MEASUREMENT RESULTS 

The prototype chip for testing the signaling part of the 
proposed system is fabricated in 65-nm low-power 
CMOS technology. The PPM transceiver occupies an 
active area of 1.2 mm2 as shown in Fig. 8. At 800-Mb/s 
data rate, the transceiver dissipates 14 mW from 1.3-V 
supply, including the transmitter output driver. Fig. 9 
shows a block diagram of the PPM transceiver and 
measurement setup. To verify that the recovered clock is 
well-aligned at the middle of the PPM signal, we 

matched printed circuit board (PCB) traces, SMA cables, 
and inter-chip buffers that connect two inputs of the 
phase-frequency detector (PFD) to the oscilloscope. 
Agilent N4903 J-BERT is used to provide a reference 
clock and an NRZ bitstream to the transmitter, and the 
recovered data is fed back to the BERT to measure the 
bit error rate (BER). The measured eye diagrams are 
shown in Fig. 10. The recovered clock is located at the 
middle of the PPM eye and it provides a sufficient timing 
margin. The transmitter clock and the recovered clock 
with a PRBS-7 pattern exhibit the RMS jitter of 10.3 ps 
and 19.7 ps, respectively. When a clock pattern is 
modulated, that is the deterministic jitter caused by the 
run-length is suppressed, the RMS jitter of the recovered 
clock becomes 16.4 ps. The transceiver operates error 
free over 14 hours, which corresponds to a BER less than 
10-13.  

The measured jitter tolerance of the PPM receiver is 
shown in Fig. 11 and is compared to the analytic results 
of (3), (4). Another prototype PPM receiver that includes 
an optical front-end (an emulated photodiode, a TIA, and 
a limiting amplifier) is used to measure the jitter 
tolerance. The design of this prototype is described in 

 

Fig. 8. Chip microphotograph.  
 

 

Fig. 9. Measurement setup.  
 

 

Fig. 10. Measured eye diagrams of the PPM signal and the 
recovered clock.  
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Fig. 11. Measured jitter tolerance of the PPM receiver.  
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[21]. The analytic model with the coefficient k = 0.5 
gives a quite accurate expectation of the measured result, 
because of the finite RMS jitter of the TX PLL and SNR 
of the front-end circuitry. The PPM receiver achieves a 
0.188-UIPP high-frequency jitter tolerance and a 7-MHz 
jitter tolerance corner frequency.  

In order to verify the validity of the proposed signaling 
over the optically powered line, the power transfer using 
the commercial laser diode and photodiode (Thorlabs 
Inc., LPS-1550-FC-130807-52 and FGA01FC), which 
provide the operating speed higher than 1 GHz, is 
measured. In the test, the photodiode operates in a photo-
voltaic mode. The measured output voltage, current, and 
power of the photodiode, which shows the maximum 
available power is 2.5 mW, are shown in Fig. 12. 
Because the voltage level is lower than the required 
voltage for the receiver, a boost converter will be 
required in the receiver side. In our improved prototype 
presented in [21], the receiver with the optical front-end 
is designed to consume less than 0.8 mW at 800 Mb/s, 
based on the measurement.  

V. CONCLUSIONS 

A signaling scheme for transmitting power, clock, and 
data over a single optical fiber for automotive network is 
proposed. A pulse-position modulation is used to keep a 
constant DC level of the signal regardless of data pattern. 
A prototype chip is fabricated in 65-nm CMOS 
technology and achieves BER less than 10-13 at 800 Mb/s.  
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