• Title/Summary/Keyword: Phase locked loop (PLL)

Search Result 415, Processing Time 0.029 seconds

A Design and Construction of Phase-locked Dielectric Resonator Oscillator for VSAT (VSAT용 위상고정 유전체 공진 발진기의 설계 및 구현)

  • 류근관;이두한;홍의석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.10
    • /
    • pp.1973-1981
    • /
    • 1994
  • A PLDRO(Phase Locked Dielectric Resonator Oscillator) in Ku-band(10.95-11.70GHz) is designed with the concept of the feedback property of PLL(Phase Locked Loop). A series feedback type DRO is developed, and VCDRO(Voltage Controlled Dielectric Resonator Oscillator) using a varactor diode as a voltage-variable capacitor is implemented to tune oscillating frequency electrically. Then, PLDRO is designed by using a SPD(Sampling Phase Detector). This PLDRO is phase-locked voltage controlled DRO to reference source(VHF band) by SPD at 10.00 GHz for European FSS(Fixed Satellite Service). The PLDRO generates output power greater than 10dBm at 10.00 GHz and has phase noise of -80 dBc/Hz at 10 KHz offset from carrier. This PLDRO achieves much better frequency stability than conventional VCDRO.

  • PDF

Pull-in Characteristics of Delay Switching Phase-Locked Loop (Delay Switching PLL의 Pull-in 특성)

  • 장병화;김재균
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.15 no.5
    • /
    • pp.13-18
    • /
    • 1978
  • A delay switching PLL (DSPLL) is proposed for improvement of the frequency acquisition Performance (pull-in range) while keeping a narrow bandwidth LPF. It has, between the phase detector and the LPF, just a simple RC delay circuit, a switch and another phase detector controlling the switching time. For the common second order PLL, the pull-in capability of the DSPLL is analyzed approximately, without considering additive white noise effect, and verified experimentally. It is shown that the delay switching extends the pull-in range significantly, as much as a half of lock-range. At the phase tracking mode, the delay switching does not function, to make the DSPLL be a normal PLL.

  • PDF

Design of a 40 GHz CMOS Phase-Locked Loop Frequency Synthesizer Using Wide-Band Injection-Locked Frequency Divider (광대역 주입동기식 주파수 분주기 기반 40 GHz CMOS PLL 주파수 합성기 설계)

  • Nam, Woongtae;Sohn, Jihoon;Shin, Hyunchol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.8
    • /
    • pp.717-724
    • /
    • 2016
  • This paper presents design of a 40 GHz CMOS PLL frequency synthesizer for a 60 GHz sliding-IF RF transceiver. For stable locking over a wide bandwith for a injection-locked frequency divider, an inductive-peaking technique is employed so that it ensures the PLL can safely lock across the very wide tuning range of the VCO. Also, Injection-locked type LC-buffer with low-phase noise and low-power consumption is added in between the VCO and ILFD so that it can block any undesirable interaction and performance degradation between VCO and ILFD. The PLL is designed in 65 nm CMOS precess. It covers from 37.9 to 45.3 GHz of the output frequency. and its power consumption is 74 mA from 1.2 V power supply.

Design of a Frequency Locked Loop Circuit

  • Choi, Jin-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.275-278
    • /
    • 2008
  • In this paper, I propose the full CMOS FLL(frequency locked loop) circuit. The proposed FLL circuit has a simple structure which contains a FVC(frequency-to-voltage converter), an operational amplifier and a VCO(voltage controlled oscillator). The operation of FLL circuit is based on frequency comparison by the two FVC circuit blocks. The locking time of FLL is short compared to PLL(phase locked loop) circuit because the output signal of FLL is synchronized only in frequency. The circuit is designed by 0.35${\mu}m$ process and simulation carried out with HSPICE. Simulation results are shown to illustrate the performance of the proposed FLL circuit.

Power Control Strategies for Single-Phase Voltage-Controlled Inverters with an Enhanced PLL

  • Gao, Jiayuan;Zhao, Jinbin;He, Chaojie;Zhang, Shuaitao;Li, Fen
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.212-224
    • /
    • 2018
  • For maintaining a reliable and secure power system, this paper describes the design and implement of a single-phase grid-connected inverter with an enhanced phase-locked loop (PLL) and excellent power control performance. For designing the enhanced PLL and power regulator, a full-bridge voltage-controlled inverter (VCI) is investigated. When the grid frequency deviates from its reference values, the output frequency of the VCI is unstable with an oscillation of 2 doubling harmonics. The reason for this oscillation is analyzed mathematically. This oscillation leads to an injection of harmonics into the grid and even causes an output active power oscillation of the VCI. For eliminating the oscillation caused by a PLL, an oscillation compensation method is proposed. With the proposed method, the VCI maintains the original PLL control characteristics and improves the PLL robustness under grid frequency deviations. On the basis of the above analysis, a power regulator with the primary frequency and voltage modulation characteristics is analyzed and designed. Meanwhile, a small-signal model of the power loops is established to determine the control parameters. The VCI can accurately output target power and has primary frequency and voltage modulation characteristics that can provide active and reactive power compensation to the grid. Finally, simulation and experimental results are given to verify the idea.

A 285-fsrms Integrated Jitter Injection-Locked Ring PLL with Charge-Stored Complementary Switch Injection Technique

  • Kim, Sungwoo;Jang, Sungchun;Cho, Sung-Yong;Choo, Min-Seong;Jeong, Gyu-Seob;Bae, Woorham;Jeong, Deog-Kyoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.860-866
    • /
    • 2016
  • An injection-locked ring phase-locked loop (ILRPLL) using a charge-stored complementary switch (CSCS) injection technique is described in this paper. The ILRPLL exhibits a wider lock range compared to other conventional ILRPLLs, owing to the improvement of the injection effect by the proposed CSCS. A frequency calibration loop and a device mismatch calibration loop force the frequency error to be zero to minimize jitter and reference spur. The prototype chip fabricated in 65-nm CMOS technology achieves a $285-fs_{rms}$ integrated jitter at GHz from the reference clock of 52 MHz while consuming 7.16 mW. The figure-of-merit of the ILRPLL is -242.4 dB.

A Phase Locked Loop with Resistance and Capacitance Scaling Scheme (저항 및 커패시턴스 스케일링 구조를 이용한 위상고정루프)

  • Song, Youn-Gui;Choi, Young-Shig;Ryu, Ji-Goo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.4
    • /
    • pp.37-44
    • /
    • 2009
  • A novel phase-locked loop(PLL) architecture with resistance and capacitance scaling scheme has been proposed. The proposed PLL has three charge pumps. The effective capacitance and resistance of the loop filter can be scaled up/down according to the locking status by controlling the direction and magnitude of each charge pump current. This architecture makes it possible to have a narrow bandwidth and low resistance in the loop filter, which improves phase noise and reference spur characteristics. It has been fabricated with a 3.3V $0.35{\mu}m$ CMOS process. The measured locking time is $25{\mu}s$ with the measured phase noise of -105.37 dBc/Hz @1MHz and the reference spur of -50dBc at 851.2MHz output frequency

121.15MHz Frequency Synthesizers using Multi-phase DLL-based Phase Selector and Fractional-N PLL (다중위상 지연고정루프 기반의 위상 선택기와 분수 분주형 위상고정루프를 이용하는 121.15 MHz 주파수 합성기)

  • Lee, Seung-Yong;Lee, Pil-Ho;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2409-2418
    • /
    • 2013
  • Two frequency synthesizers are proposed to generate a clock for a sub-sampler of an on-chip oscilloscope in this paper. These proposed frequency synthesizers are designed by using a multi-phase delayed-locked loop (DLL)-based phase selector and a fractional-N phase-locked loop (PLL), and they are analyzed by comparing simulation results of each frequency synthesizer. Two proposed frequency synthesizers are designed using a 65-nm CMOS process with a 1V supply and output the clock with the frequency of 121.15 MHz when the frequency of an input clock is 125 MHz. The designed frequency synthesizer using a multi-phase DLL-based phase selector has the area of 0.167 $mm^2$ and the peak-to-peak jitter performance of 2.88 ps when it consumes the power of 4.75 mW. The designed frequency synthesizer using a fractional-N PLL has the area of 0.662 $mm^2$ and the peak-to-peak jitter performance of 7.2 ps when it consumes the power of 1.16 mW.

Study on Strengthened Synchronism of SRM Using a PLL (PLL을 이용한 SRM의 동기화 강화에 대한 연구)

  • Oh, Seok-Gyu;Lee, Seong-Du;Ahn, Jin-Woo;Hwang, Young-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.403-405
    • /
    • 1996
  • This paper suggestes a SRM drive scheme which include power angle control like synchronous machine and a Phase Locked LooP(PLL) control. The power angle control scheme regulates instantly dwell angle as load torque variation, but this is some disadvantages which are losing of synchronism and hunting when load changes abruptly. To increasing synchronism, the Phase Locked Loop control scheme is adopted.

  • PDF

An Integer-N PLL Frequency Synthesizer Design for The 900MHz UHF RFID Application (900MHz UHF대역 RFID 응용을 위한 Integer-N PLL주파수 합성기 설계)

  • Kim, Sin-Woong;Kim, Young-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.4
    • /
    • pp.247-252
    • /
    • 2009
  • This paper presents an Integer-N phase-locked loop (PLL) frequency synthesizer using a novel prescaler based on a charge pump and clock triggering circuit. A quadrature VCO has been designed for the 900MHz UHF RFID application. In this circuit, a voltage-controlled oscillator(VCO), a novel Prescaler, phase frequency detector(PFD), charge pump(CP), and analog lock detector(ALD) have been integrated with 0.35-${\mu}m$CMOS process. The integer divider has been developed with a verilog-HDL module, and the PLL mixed mode simulation has been performed with Spectre-Verilog co-simulator. The sweep range of VCO is designed from 828 to 960 MHz and the VCO generates four phase quadrature signals. The simulation results show that the phase noise of VCO is -102dBc/Hz at 100 KHz offset frequency, and the maximum lock-in time is about 4us with 32MHz step change (from 896 to 928 MHz).

  • PDF