• 제목/요약/키워드: Phase change memory

검색결과 175건 처리시간 0.028초

상 변화 메모리 재료 내의 Ga 주입에 미치는 GaGe 스퍼터링 전력의 영향 (Effect of GaGe Sputtering Power on Ga Doping in Phase Change Memory Materials)

  • 정순원;이승윤
    • 한국전기전자재료학회논문지
    • /
    • 제28권5호
    • /
    • pp.285-290
    • /
    • 2015
  • The phase change memory material is an active element in phase change memory and exhibits reversible phase transition behavior by thermal energy input. The doping of the phase change memory material with Ga leads to the increase of its crystallization temperature and the improvement of its amorphous stability. In this study, we investigated the effect of GaGe sputtering power on the formation of the phase change memory material including Ga. The deposition rate linearly increased to a maximum of 127 nm and the surface roughness remained uniform as the GaGe sputtering power increased in the range from 0 to 75 W. The Ga concentration in the thin film material abruptly increased at the critical sputtering power of 60 W. This influence of GaGe sputtering power was confirmed to result from a combined sputtering-evaporation process of Ga occurring due to the low melting point of Ga ($29.77^{\circ}C$).

Overview of the Current Status of Technical Development for a Highly Scalable, High-Speed, Non-Volatile Phase-Change Memory

  • Lee, Su-Youn;Jeong, Jeung-Hyun;Cheong, Byung-Ki
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제8권1호
    • /
    • pp.1-10
    • /
    • 2008
  • The present status of technical development of a highly scalable, high-speed non-volatile PCM is overviewed. Major technical challenges are described along with solutions that are being pursued in terms of innovative device structures and fabrication technologies, new phase change materials, and new memory schemes.

Synthesis and Analysis of Ge2Sb2Te5 Nanowire Phase Change Memory Devices

  • 이준영;김정현;전덕진;한재현;여종석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.222.2-222.2
    • /
    • 2015
  • A $Ge_2Sb_2Te_5$ nanowire (GST NW) phase change memory device is investigated with Joule heating electrodes. GST is the most promising phase change materials, thus has been studied for decades but atomic structure transition in the phase-change area of single crystalline phase-change material has not been clearly investigated. We fabricated a phase change memory (PCM) device consisting of GST NWs connected with WN electrodes. The GST NW has switching performance with the reset/set resistance ratio above $10^3$. We directly observed the changes in atomic structure between the ordered hexagonal close packed (HCP) structure and disordered amorphous phase of a reset-stop GST NW with cross-sectional STEM analysis. Amorphous areas are detected at the center of NW and side areas adjacent to heating electrodes. Direct imaging of phase change area verified the atomic structure transition from the migration and disordering of Ge and Sb atoms. Even with the repeated phase transitions, periodic arrangement of Te atoms is not significantly changed, thus acting as a template for recrystallization. This result provides a novel understanding on the phase-change mechanism in single crystalline phase-change materials.

  • PDF

하부전극에 따른 상변화 메모리 셀의 전기 및 발열 특성 (The Electrical and Thermal Properties of Phase Change Memory Cell with Bottom Electrode)

  • 장낙원;김홍승;이준기;김도형;마석범
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.103-104
    • /
    • 2006
  • PRAM (Phase change Random Access Memory) is one of the most promising candidates for next generation Non-volatile Memories. The Phase change material has been researched in the field of optical data storage media. However, the characteristics required in solid state memory are quite different from optical ones. In this study, the reset current and temperature profile of PRAM cells with bottom electrode were calculated by the numerical method.

  • PDF

Accelerating Memory Access with Address Phase Skipping in LPDDR2-NVM

  • Park, Jaehyun;Shin, Donghwa;Chang, Naehyuck;Lee, Hyung Gyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권6호
    • /
    • pp.741-749
    • /
    • 2014
  • Low power double data rate 2 non-volatile memory (LPDDR2-NVM) has been deemed the standard interface to connect non-volatile memory devices such as phase-change memory (PCM) directly to the main memory bus. However, most of the previous literature does not consider or overlook this standard interface. In this paper, we propose address phase skipping by reforming the way of interfacing with LPDDR2-NVM. To verify effectiveness and functionality, we also develop a system-level prototype that includes our customized LPDDR2-NVM controller and commercial PCM devices. Extensive simulations and measurements demonstrate up to a 3.6% memory access time reduction for commercial PCM devices and a 31.7% reduction with optimistic parameters of the PCM research prototypes in industries.

$Ge_2Sb_2Te_5$ 상변화 소자의 상부구조 변화에 따른 결정화 특성 연구 (A study on characteristics of crystallization according to changes of top structure with phase change memory cell of $Ge_2Sb_2Te_5$)

  • 이재민;신경;최혁;정홍배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.80-81
    • /
    • 2005
  • Chalcogenide phase change memory has high performance to be next generation memory, because it is a nonvolatile memory processing high programming speed, low programming voltage, high sensing margin, low consumption and long cycle duration. We have developed a sample of PRAM with thermal protected layer. We have investigated the phase transition behaviors in function of process factor including thermal protect layer. As a result, we have observed that set voltage and duration of protect layer are more improved than no protect layer.

  • PDF

칼코게나이드 다층박막의 상변화 특성에 관한 연구 (A Study on Characteristics of Phase Change in Chalcogenide Multilayered Thin Film)

  • 최혁;김현구;정홍배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 C
    • /
    • pp.1426-1427
    • /
    • 2006
  • Chalcogenide based phase-change memory has a high capability and potential for the next generation nonvolatile memory device. Fast writing speed, low writing voltage, high sensing margin, low power consume and long cycle of read/write repeatability are also good advantages of nonvolatile phase-change memory. We have been investigated the new material for the phase-change memory. Its composition is consists of chalcogenide $Ge_{1}Se_{1}Te_2$ material. We made this new material to solve problems of conventional phase-change memory which has disadvantage of high power consume and high writing voltage. In the present work, we are manufactured $Ge_{1}Se_{1}Te_{2}/Ge_{2}Sb_{2}Te_{5}/Ge_{1}Se_{1}Te_{2}$ and $Ge_{2}Sb_{2}Te_{5}/Ge_{1}Se_{1}Te_{2}/Ge_{2}Sb_{2}Te_{5}$ sandwich triple layer structure devices are manufactured to investigate its electrical properties. Through the present work, we are willing to ensure a potential of substitutional method to overcome a crystallization problem on PRAM device.

  • PDF

상변화 메모리 응용을 위한 $Ge_{1}Se_{1}Te_{2}$ 박막의 셀 구조에 따른 전기적 특성 (Electrical characteristic for Phase-change Random Access Memory according to the $Ge_{1}Se_{1}Te_{2}$ thin film of cell structure)

  • 나민석;임동규;김재훈;최혁;정홍배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1335-1336
    • /
    • 2007
  • Among the emerging non-volatile memory technologies, phase change memories are the most attractive in terms of both performance and scalability perspectives. Phase-change random access memory(PRAM), compare with flash memory technologies, has advantages of high density, low cost, low consumption energy and fast response speed. However, PRAM device has disadvantages of set operation speed and reset operation power consumption. In this paper, we investigated scalability of $Ge_{1}Se_{1}Te_{2}$ chalcogenide material to improve its properties. As a result, reduction of phase change region have improved electrical properties of PRAM device.

  • PDF

Scaling Down Characteristics of Vertical Channel Phase Change Random Access Memory (VPCRAM)

  • Park, Chun Woong;Park, Chongdae;Choi, Woo Young;Seo, Dongsun;Jeong, Cherlhyun;Cho, Il Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권1호
    • /
    • pp.48-52
    • /
    • 2014
  • In this paper, scaling down characteristics of vertical channel phase random access memory are investigated with device simulator and finite element analysis simulator. Electrical properties of select transistor are obtained by device simulator and those of phase change material are obtained by finite element analysis simulator. From the fusion of both data, scaling properties of vertical channel phase change random access memory (VPCRAM) are considered with ITRS roadmap. Simulation of set reset current are carried out to analyze the feasibility of scaling down and compared with values in ITRS roadmap. Simulation results show that width and length ratio of the phase change material (PCM) is key parameter of scaling down in VPCRAM. Thermal simulation results provide the design guideline of VPCRAM. Optimization of phase change material in VPCRAM can be achieved by oxide sidewall process optimization.

하부전극 구조 개선에 의한 상변화 메모리의 전기적 특성 (Electrical characteristic of Phase-change Random Access Memory with improved bottom electrode structure)

  • 김현구;최혁;조원주;정홍배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.69-70
    • /
    • 2006
  • A detailed Investigation of cell structure and electrical characteristic in chalcogenide-based phase-change random access memory(PRAM) devices is presented. We used compound of Ge-Sb-Te material for phase-change cell. A novel bottom electrode structure and manufacture are described. We used heat radiator structure for improved reset characteristic. A resistance change measurement is performed on the test chip. From the resistance change, we could observe faster reset characteristic.

  • PDF