• Title/Summary/Keyword: Phase Loop Locked(PLL)

Search Result 415, Processing Time 0.033 seconds

A Current Compensating Scheme for Improving Phase Noise Characteristic in Phase Locked Loop

  • Han, Dae Hyun
    • Journal of Multimedia Information System
    • /
    • v.5 no.2
    • /
    • pp.139-142
    • /
    • 2018
  • This work presents a novel architecture of phase locked loop (PLL) with the current compensating scheme to improve phase noise characteristic. The proposed PLL has two charge pumps (CP), main-CP (MCP) and sub-CP (SCP). The smaller SCP current with same time duration but opposite direction of UP/DN MCP current is injected to the loop filter (LF). It suppresses the voltage fluctuation of LF. The PLL has a novel voltage controlled oscillator (VCO) consisting of a voltage controlled resistor (VCR) and the three-stage ring oscillator with latch type delay cells. The VCR linearly converts voltage into current, and the latch type delay cell has short active on-time of transistors. As a result, it improves phase noise characteristic. The proposed PLL has been fabricated with $0.35{\mu}m$ 3.3 V CMOS process. Measured phase noise at 1 MHz offset is -103 dBc/Hz resulting in 3 dBc/Hz phase noise improvement compared to the conventional PLL.

Advanced 1-Phase PLL (Phase Locked Loop) Algorithm Using Arcsin (Arcsin을 이용한 새로운 단상 PLL (Phase Locked Loop) 알고리즘 구현)

  • Kim, Dong-Hee;Lee, Woong;Ko, Jeong-Min;Lee, Byoung-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.240-242
    • /
    • 2008
  • 본 논문에서는 단상 PLL알고리즘 중 하나인 영점검출 방식에서의 순시제어 불능을 극복하기 위해 arcsin을 이용한 알고리즘을 제안하였다. 또한 시뮬레이션을 통해 영점검출과 비교하여 제안된 PLL알고리즘의 순시제어 가능성을 검증하였다.

  • PDF

A Frequency Locked Loop Using a Phase Frequency Detector (위상주파수 검출기를 이용한 주파수 잠금회로)

  • Im, Pyung-Soon;Lee, Dong-Hyun;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.7
    • /
    • pp.540-549
    • /
    • 2017
  • A phase frequency detector(PFD) composed of logic circuits is widely used in a phase locked loop(PLL) due to the easy implementation for integrated circuits. A frequency locked loop(FLL) removes the reference oscillator in the PLL, and the resonator serves as a reference oscillator. A frequency detector(FD) is indispensable for the FLL configuration, and a FD, which is usually composed of a mixer is used to build an FLL. In this paper, instead of FD using mixer, a FD is constructed by using 1.175 GHz resonator composed of microstrip and PFD taking the versatility of PFD into consideration. Using the designed FD, FLL oscillating at a frequency of 1.175 GHz is composed. As a result of comparison with the FLL composed of FD using mixer, it was confirmed that the proposed FLL has better phase noise performance than FLL using mixer FD with FLL bandwidth.

Design of Low voltage High speed Phase Locked Loop (고속 저전압 위상 동기 루프(PLL) 설계)

  • Hwang, In-Ho;Cho, Sang-Bock
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.267-269
    • /
    • 2007
  • PLL(Phase Locked Loop) are widely used circuit technique in modern electronic systems. In this paper, We propose the low voltage and high speed PLL. We design the PFD(Phase Frequency Detector) by using TSPC (True Single Phase Clock) circuit to improve the performance and solve the dead-zone problem. We use CP(Charge Pump} and LP(Loop filter) for Negative feedback and current reusing in order to solve current mismatch and switch mismatch problem. The VCO(Voltage controlled Oscillator) with 5-stage differential ring oscillator is used to exact output frequency. The divider is implemented by using D-type flip flops asynchronous dividing. The frequency divider has a constant division ratio 32. The frequency range of VCO has from 200MHz to 1.1GHz and have 1.7GHz/v of voltage gain. The proposed PLL is designed by using 0.18um CMOS processor with 1.8V supply voltage. Oscillator's input frequency is 25MHz, VCO output frequency is 800MHz and lock time is 5us. It is evaluated by using cadence spectra RF tools.

  • PDF

Steady-State Performance Improvement of Single-Phase PWM Inverters Using PLL Technique (PLL 기법을 이용한 단상 PWM 인버터의 정상상태 성능개선)

  • 정세교;이대식
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.356-363
    • /
    • 2004
  • This paper presents a precision voltage control technique of a single phase PWM inverter for a constant voltage and constant frequency(CVCF) applications. The proposed control scheme employs an additional phase-locked loop(PLL) compensator which is constructed using the output capacitor voltage and current. The computer simulation and experiment are carried out for the actual single-phase PWM inverter and it is well demonstrated from these results that the steady-state performance and total harmonic distortion(THD) are remarkably improved by employing the proposed technique.

An Ultra Small Size Phase Locked Loop with a Signal Sensing Circuit (신호감지회로를 가진 극소형 위상고정루프)

  • Park, Kyung-Seok;Choi, Young-Shig
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.6
    • /
    • pp.479-486
    • /
    • 2021
  • In this paper, an ultra small phase locked loop (PLL) with a single capacitor loop filter has been proposed by adding a signal sensing circuit (SSC). In order to extremely reduce the size of the PLL, the passive element loop filter, which occupies the largest area, is designed with a very small single capacitor (2pF). The proposed PLL is designed to operate stably by the output of the internal negative feedback loop including the SSC acting as a negative feedback to the output of the single capacitor loop filter of the external negative feedback loop. The SSC that detects the PLL output signal change reduces the excess phase shift of the PLL output frequency by adjusting the capacitance charge of the loop filter. Although the proposed structure has a capacitor that is 1/78 smaller than that of the existing structure, the jitter size differs by about 10%. The PLL is designed using a 1.8V 180nm CMOS process and the Spice simulation results show that it works stably.

Adaptive Neural PLL for Grid-connected DFIG Synchronization

  • Bechouche, Ali;Abdeslam, Djaffar Ould;Otmane-Cherif, Tahar;Seddiki, Hamid
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.608-620
    • /
    • 2014
  • In this paper, an adaptive neural phase-locked loop (AN-PLL) based on adaptive linear neuron is proposed for grid-connected doubly fed induction generator (DFIG) synchronization. The proposed AN-PLL architecture comprises three stages, namely, the frequency of polluted and distorted grid voltages is tracked online; the grid voltages are filtered, and the voltage vector amplitude is detected; the phase angle is estimated. First, the AN-PLL architecture is implemented and applied to a real three-phase power supply. Thereafter, the performances and robustness of the new AN-PLL under voltage sag and two-phase faults are compared with those of conventional PLL. Finally, an application of the suggested AN-PLL in the grid-connected DFIG-decoupled control strategy is conducted. Experimental results prove the good performances of the new AN-PLL in grid-connected DFIG synchronization.

Temperature Stable Frequency-to-Voltage Converter (동작온도에 무관한 Frequency-to-Voltage 변환 회로)

  • Choi, Jin-Ho;Yu, Young-Jung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.949-954
    • /
    • 2007
  • In this work, temperature stable frequency-to-voltage converter is proposed. In FVC circuit input frequency is converted into output voltage signal. A FLL is similar to PLL in the way that it generates an output signal which tracks an input reference signal. A PLL is built on a phase detector, a charge pump, and a low pass filter. However, FLL does not require the use of the phase detector, the charge pump and low pass filter. The FVC is designed by using $0.25{\mu}m$ CMOS process technology. From simulation results, the variation of output voltage is less than ${\pm}2%$ in the temperature range $0^{\circ}C\;to\;75^{\circ}C$ when the input frequency is from 70MHz to 140MHz.

A Low-Spur CMOS PLL Using Differential Compensation Scheme

  • Yun, Seok-Ju;Kim, Kwi-Dong;Kwon, Jong-Kee
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.518-526
    • /
    • 2012
  • This paper proposes LC voltage-controlled oscillator (VCO) phase-locked loop (PLL) and ring-VCO PLL topologies with low-phase noise. Differential control loops are used for the PLL locking through a symmetrical transformer-resonator or bilaterally controlled varactor pair. A differential compensation mechanism suppresses out-band spurious tones. The prototypes of the proposed PLL are implemented in a CMOS 65-nm or 45-nm process. The measured results of the LC-VCO PLL show operation frequencies of 3.5 GHz to 5.6 GHz, a phase noise of -118 dBc/Hz at a 1 MHz offset, and a spur rejection of 66 dBc, while dissipating 3.2 mA at a 1 V supply. The ring-VCO PLL shows a phase noise of -95 dBc/Hz at a 1 MHz offset, operation frequencies of 1.2 GHz to 2.04 GHz, and a spur rejection of 59 dBc, while dissipating 5.4 mA at a 1.1 V supply.

Design of Ku-Band Phase Locked Harmonic Oscillator (Ku-Band용 위상 고정 고조파 발진기 설계)

  • Lee Kun-Joon;Kim Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.1 s.92
    • /
    • pp.49-55
    • /
    • 2005
  • In this paper, the phase locked harmonic oscillator(PLHO) using the analog PLL(Phase Locked Loop) is designed and implemented for a wireless LAN system. The harmonic oscillator is consisted of a ring resonator, a varactor diode and a PLL circuit. Because the fundamental fiequency of 8.5 GHz is used as the feedback signal for the PLL and the 2nd harmonic of 17.0 GHz is used as the output, a analog frequency divider for the phase comparison in the PLL system can be omitted. For the simple PLL circuit, the SPD(Sampling Phase Detector) as a phase comparator is used. The output power of the phase locked harmonic oscillator is 2.23 dBm at 17 GHz. The fundamental and 3rd harmonic suppressions are -31.5 dBc and -29.0 dBc, respectively. The measured phase noise characteristics are -87.6 dBc/Hz and -95.4 dBc/Hz at the of offset frequency of 1 kHz and 10 kHz from the carrier, respectively.