• Title/Summary/Keyword: Phase Locked Loop

Search Result 567, Processing Time 0.027 seconds

Study on the Design of S/PDIF BC which Can Operate without PLL (PLL없이 동작하는 S/PDIF IC 설계에 관한 연구)

  • Park Ju-Sung;Kim Suk-Chan;Kim Kyoung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.11-20
    • /
    • 2005
  • In this paper, we deal with the research about a S/PDIF (Sony Philips Digital Interface) receiver which can operate without PLL (Phase Locked Loop) circuits. Although a S/PDIF receiver is used in most audio devices and audio processors in these days. yet there are only few domestic researches about S/PDIF. Currently used commercial DACs (Digital-to-Analog Converters) which can decode S/PDIF signals, have a PLL circuit inside them. The PLL makes it possible to extract clock information from S/PDIF digital signal and to synchronize a clock signal with input signals. But the PLL circuit makes many diffculties in designing the SOC (System On Chips) of VLSIs (Vew Large Scale Integrated Ciruits) because it is an "analog circuit". We proposed a S/PDIF receiver which doesn't have PLL circuits and only has Pure digital circuits. The key idea of the proposed S/PDIF receiver. is to use the ratio between a 16 MHz basic input clock and S/PDIF signals. After having decoded hundreds thousands S/PDIF inputs, it went to prove that a S/PDIF receiver can be designed with pure digital circuits and without any analog circuits such as PLL circuits. We have confidence that the proposed S/PDIF receiver can be used as an IP (Intellectual Property) for the SOC design of the digital circuits.

Frequency Synchronization Algorithm for Improving Performance of OFDMA System in 3GPP LTE Downlink (3GPP LTE 하향링크 OFDMA 시스템의 수신 성능 향상을 위한 주파수 동기 알고리즘)

  • Lee, Dae-Hong;Im, Se-Bin;Roh, Hee-Jin;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1C
    • /
    • pp.120-130
    • /
    • 2009
  • In this paper, we propose a receiver structure for frequency synchronization in OFDMA (Orthogonal Frequency Division Multiple Access) system which is considered as 3GPP LTE(Long Term Evolution) downlink. In general, OFDMA frequency synchronization consists of two parts: coarse synchronization and fine synchronization. We consider P-SCH (Primary-Synchronization Channel) and CP (Cyclic Prefix) of OFDMA symbol for coarse synchronization and fine synchronization, respectively. The P-SCH signal has two remarkable disadvantages that it does not have sufficiently many sub-carriers and its differential correlation characteristic is not good due to ZC (Zadoff Chu) sequence-specific property. Hence, conventional frequency synchronization algorithms cannot obtain satisfactory performance gain. In this paper, we propose a modified differential correlation algorithm to improve performance of the coarse frequency synchronization. Also, we introduce an effective PLL (Phase Locked Loop) structure to guarantee stable performance of the fine frequency synchronization. Simulation results verify that the proposed algorithm has superior performance to the conventional algorithms and the 2nd-order PLL is effective to track the fine frequency offset even in high mobility.

A Charge Pump Circuit in a Phase Locked Loop for a CMOS X-Ray Detector (CMOS X-Ray 검출기를 위한 위상 고정 루프의 전하 펌프 회로)

  • Hwang, Jun-Sub;Lee, Yong-Man;Cheon, Ji-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.359-369
    • /
    • 2020
  • In this paper, we proposed a charge pump (CP) circuit that has a wide operating range while reducing the current mismatch for the PLL that generates the main clock of the CMOS X-Ray detector. The operating range and current mismatch of the CP circuit are determined by the characteristics of the current source circuit for the CP circuit. The proposed CP circuit is implemented with a wide operating current mirror bias circuit to secure a wide operating range and a cascode structure with a large output resistance to reduce current mismatch. The proposed wide operating range cascode CP circuit was fabricated as a chip using a 350nm CMOS process, and current matching characteristics were measured using a source measurement unit. At this time, the power supply voltage was 3.3 V and the CP circuit current ICP = 100 ㎂. The operating range of the proposed CP circuit is △VO_Swing=2.7V, and the maximum current mismatch is 5.15 % and the maximum current deviation is 2.64 %. The proposed CP circuit has low current mismatch characteristics and can cope with a wide frequency range, so it can be applied to systems requiring various clock speed.

Synchronization Techniques for Single-Phase and Three-Phase Grid Connected Inverters using PLL Algorithm (PLL 알고리즘을 사용한 단상 및 3상 계통연계형 인버터의 동기화 기법)

  • Chun, Tae-Won;Lee, Hong-Hee;Kim, Heung-Geun;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.309-316
    • /
    • 2011
  • A PLL system has widely used for synchronizing the grid voltage at the grid-connected inverter for supplying power from the PV generation systems. In this paper, a PLL algorithm without both the loop filter and PI controller is suggested for improving the performance of synchronization at the single-phase and three-phase grid connected inverters. In order that the output voltage of a phase detector in the PLL has only a dc voltage, and it approaches to 0 when the synchronization signal is locked to the grid voltage, the feedback signals are determined by using two-phase voltages. After the PLL system with a proportional controller is modelled with the small signal analysis, the stability and steady-state error are investigated. Through the simulation studies and experimental results, the performances of the proposed PLL algorithm are verified.

A Study on the Design and Fabrication of Phase Locked Dielectric Resonance Oscillator (위상고정 유전체 공진형 발진기의 설계 및 제작에 관한 연구)

  • Seo Gon;Park hang-Hyun;Kim Jang-Gu;Choi Byung-Ha
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.3 s.333
    • /
    • pp.25-32
    • /
    • 2005
  • In this papers, we first, therefore, designed VCO(voltage controlled oscillator) that is composed of the dielectric resonator and the varactor diode, and then designed and fabricated PLDRO(phase locked dielectric resonator oscillator) that is combined with the sampling phase detector and loop filter. The measured results of the fabricated PLDRO at 12.05 [GHz] show the output power is 13.54 [dBm], frequency tuning range approximately +/- 7.5 [MHz], and Power variation over the tuning range less than 0.2 [dB], respectively. The phase noise which effects on bits error rate in digital communication is obtained with -114.5 [dBc/Hz] at 100 [KHz] offset from carrier, and The second harmonic suppression is less than -41.49 [dBc]. These measured results are found to be more improved than those of VCO without adopting PLL, and the phase noise and power variation performance characteristics show the better performances than those of conventional PLL.

A Fast-Locking Fractional-N PLL with Multiple Charge Pumps and Capacitance Scaling Scheme (Capacitance Scaling 구조와 여러 개의 전하 펌프를 이용한 고속의 ${\Sigma}{\Delta}$ Fractional-N PLL)

  • Kwon, Tae-Ha
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.10 s.352
    • /
    • pp.90-96
    • /
    • 2006
  • A novel ${\Sigma}{\Delta}$ fractional-N PLL architecture for fast locking and fractional spur suppressing is proposed based on the capacitance scaling scheme. It changes the effective capacitance of loop filter (LF) by increasing and decreasing current to the capacitor via different paths with multiple charge pumps. The effective capacitance of loop filter (LF) can be scaled up/down depending on operating status while keeping LF capacitors small enough to be integrated into a single PLL chip. Fractional spurs suppressing have been achieved by reducing the magnitude of charge pump current when the PLL is in-lock without degrading fast locking characteristic. It has been simulated by HSPICE in a CMOS $0.35{\mu}m$ process, and shows flat locking time is less than $8{\mu}s$ with the small size of LF capacitors, 200pF and 17pF, and $2.8k{\Omega}$ resistor.

Design and Modeling of a DDS Driven Offset PLL with DAC (DAC를 적용한 DDS Driven Offset PLL모델링 및 설계)

  • Kim, Dong-Sik;Lee, Hang-Soo;Kim, Jong-Pil;Kim, Seon-Ju
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.1-9
    • /
    • 2012
  • In this paper, we presents the modeling and implementation of the DDS(Direct Digital synthesizer) driven offset PLL(Pghase Locked Loop) with DAC(Digital Analog Converter) for coarse tune. The PLL synthesizer was designed for minimizing the size and offset frequency and DDS technique was used for ultra low noise and fast lock up time, also DAC was used for coarse tune. The output phase noise was analyzed by superposition theory with the phase noise transfer function and noise source modeling. the phase noise prediction was evaluated by comparing with the measured data. The designed synthesizer has ultra fast lock time within 6 usec and ultra low phase noise performance of -120 dBc/Hz at 10KHz offset frequency.

A Robust PLL of PCS for Fuel Cell System under Unbalanced Grid Voltages (불평형 계통전압에 강인한 연료전지용 전력변환시스템의 PLL 방법)

  • Kim, Yun-Hyun;Kim, Wang-Rae;Lim, Chang-Jin;Kim, Kwang-Seob;Kwon, Byung-Ki;Choi, Chang-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.103-105
    • /
    • 2008
  • In grid-interconnection system, a fast, robust and precise phase angle detector is most important to grid synchronization and the active power control. The phase angle can be easily estimated by synchronous dq PLL system. On the other hand under unbalanced voltage condition, synchronous dq PLL system has problem that harmonics occur to phase angle or magnitude of grid voltage because of the effect of the negative sequence components. So, To eliminate the negative sequence components, the PLL method using APF (All Pass Filter) in a stationery reference frame to extract positive sequence components under unbalanced voltage condition is researched. In this paper, we propose a new PLL method with decoupling network using APF in a synchronous reference frame to extract the positive sequence components of the grid voltage under unbalanced grid. The cut-off frequency of APF in a synchronous reference frame can be set to twice of the fundamental frequency comparing with that of APF in a stationery reference frame which is the fundamental frequency. The proposed PLL strategy can detect the phase angle quickly and accurately under unbalanced gird voltages. Simulation and experimental results are presented to verify the proposed strategy under different kind of voltage dips.

  • PDF

40Gb/s Clock and Data Recovery Circuit with Multi-phase LC PLL in CMOS $0.18{\mu}m$ (LC형 다중 위상 PLL 이용한 40Gb/s $0.18{\mu}m$ CMOS 클록 및 데이터 복원 회로)

  • Ha, Gi-Hyeok;Lee, Jung-Yong;Kang, Jin-Ku
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.36-42
    • /
    • 2008
  • 40Gb/s CMOS Clock and Data Recovery circuit design for optical serial link is proposed. The circuit generates 8 multiphase clock using LC tank PLL and controls the phase between the clock and the data using the $2{\times}$ oversampling Bang-Bang PD. 40Gb/s input data is 1:4 demultiplexed and recovered to 4 channel 10Gb/s outputs. The design was progressed to separate the analog power and the digital power. The area of the chip is $2.8{\times}2.4mm^2$ for the inductors and the power dissipation is about 200mW. The chip has been fabricated using 0.18um CMOS process. The measured results show that the chip recovers the data up to 9.5Gb/s per channel(Equivalent to serial input rate of up to 38Gb/s).

A 12 mW ADPLL Based G/FSK Transmitter for Smart Utility Network in 0.18 ㎛ CMOS

  • Park, Hyung-Gu;Kim, Hongjin;Lee, Dong-Soo;Yu, Chang-Zhi;Ku, Hyunchul;Lee, Kang-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.4
    • /
    • pp.272-281
    • /
    • 2013
  • This paper presents low power frequency shift keying (FSK) transmitter using all digital PLL (ADPLL) for smart utility network (SUN). In order to operate at low-power and to integrate a small die area, the ADPLL is adopted in transmitter. The phase noise of the ADPLL is improved by using a fine resolution time to digital converter (TDC) and digitally controlled oscillator (DCO). The FSK transmitter is implemented in $0.18{\mu}m$ 1-poly 6-metal CMOS technology. The die area of the transmitter including ADPLL is $3.5mm^2$. The power consumption of the ADPLL is 12.43 mW. And, the power consumptions of the transmitter are 35.36 mW and 65.57 mW when the output power levels are -1.6 dBm and +12 dBm, respectively. Both of them are supplied by 1.8 V voltage source. The frequency resolution of the TDC is 2.7 ps. The effective DCO frequency resolution with the differential MOS varactor and sigma-delta modulator is 2.5 Hz. The phase noise of the ADPLL output at 1.8 GHz is -121.17 dBc/Hz with a 1 MHz offset.