Browse > Article
http://dx.doi.org/10.17661/jkiiect.2020.13.5.359

A Charge Pump Circuit in a Phase Locked Loop for a CMOS X-Ray Detector  

Hwang, Jun-Sub (Department of Electronic Engineering, Kumoh National Institute of Technology)
Lee, Yong-Man (HW Part, RY Lab, Rayence)
Cheon, Ji-Min (School of Electronic Engineering, Kumoh National Institute of Technology)
Publication Information
The Journal of Korea Institute of Information, Electronics, and Communication Technology / v.13, no.5, 2020 , pp. 359-369 More about this Journal
Abstract
In this paper, we proposed a charge pump (CP) circuit that has a wide operating range while reducing the current mismatch for the PLL that generates the main clock of the CMOS X-Ray detector. The operating range and current mismatch of the CP circuit are determined by the characteristics of the current source circuit for the CP circuit. The proposed CP circuit is implemented with a wide operating current mirror bias circuit to secure a wide operating range and a cascode structure with a large output resistance to reduce current mismatch. The proposed wide operating range cascode CP circuit was fabricated as a chip using a 350nm CMOS process, and current matching characteristics were measured using a source measurement unit. At this time, the power supply voltage was 3.3 V and the CP circuit current ICP = 100 ㎂. The operating range of the proposed CP circuit is △VO_Swing=2.7V, and the maximum current mismatch is 5.15 % and the maximum current deviation is 2.64 %. The proposed CP circuit has low current mismatch characteristics and can cope with a wide frequency range, so it can be applied to systems requiring various clock speed.
Keywords
Charge pump; current mismatch; high swing; PLL; low voltage; cascode structure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Lee, J. Jeong, T. Kim, C. Park, T. Kim, and Y. Chae, "A 5.2-Mpixel 88.4-dB DR 12-in CMOS X-Ray Detector With 16-bit Column-Parallel Continuous-Time Incremental ${\Delta}{\Sigma}$ ADCs", IEEE J. Solid-State Circuits, Early Access.
2 G. D. Geronimo, P. Rehak, K. Ackley, G. Carini, W. Chen, J. Fried, J. Keister, S. Li, Z. Li, D. A. Pinelli, D. P. Siddons, E. Vernon, J. A. Gaskin, B. D. Ramsey, and T. A. Tyson, "ASIC for SDD- based X-ray spectrometers", IEEE Trans. Nucl. Sci., vol. 57, no. 3, pp. 1654-1663, Jun. 2010.   DOI
3 F. Schembari, R. Quaglia, G. Bellotti, and C. Fiorini, "SFERA: An integrated circuit for the readout of X and ${\gamma}$-ray detectors", IEEE Trans. Nucl. Sci., vol. 63, no. 3, pp. 1797-1807, Jun. 2016.   DOI
4 G. Bellotti, A. D. Butt, M. Carminati, C. Fiorini, L. Bombelli, G. Borghi, C. Piemonte, N. Zorzi, and A. Balerna, "ARDESIA detection module: A four-channel array of SDDs for Mcps X-Ray spectroscopy in synchrotron radiation applications", IEEE Trans. Nucl. Sci., vol. 65, no. 7, pp. 1355-1364, Jul. 2018.   DOI
5 K. Uesugi, M. Hoshino, and N. Yagi, "Comparison of lens- and fibercoupled CCD detectors for X-ray computed tomography", J. Synchrotron. Rad., vol. 18, no. 2, pp. 217-223, Mar. 2011.   DOI
6 H. K. Kim, J. K. Ahn, and G. Cho, "Development of a lens-coupled CMOS detector for an X-ray inspection system", Nucl. Instrum. Methods Phys. Res. A, vol. A545, no. 1/2, pp. 210-216, Jun. 2005.
7 H. Liu, H. Jiang, L. L. Fajardo, A. Karellas, and W. R. Chen, "Lens distortion in optically coupled digital X-ray imaging", Med. Phys., vol. 27, no. 5, pp. 906-912, May 2000.   DOI
8 E. Kotter and M. Langer, "Digital radiography with large-area flat-panel detectors", Eur. Radiol., vol. 12, no. 10, pp. 2562-2570, Oct. 2002.   DOI
9 M. Farrier, T. G. Achterkirchen, G. P. Weckler, and A. Mrozack, "Very large area CMOS active-pixel sensor for digital radiography", IEEE Trans. Electron Devices, vol. 56, no. 11, pp. 2623-2631, Nov. 2009.   DOI
10 R. Reshef, T. Leitner, S. Alfassi, E. Sarig, N. Golan, O. Berman, A. Fenigstein, H. Wolf, G. Hevel, S. Vilan, and A. Lahav, "Large-format medical X-ray CMOS image sensor for high resolution high frame rate applications", Proc. Int. Image Sensor Workshop, Jun. 2009, pp. 1-4.
11 L. Korthout, D. Verbugt, J. Timpert, A. Mierop, W. D. Haan, W. Maes, J. D. Meulmeester, W. Muhammad, B. Dillen, H. Stoldt, I. Peters, and E. Fox, "A wafer-scale CMOS APS imager for medical X-ray applications", Proc. Int. Image Sensor Workshop, Jun. 2009, pp. 1-5.
12 S. K. Heo, J. Kosonen, S. H. Hwang, T. W. Kim, S. Yun, and H. K. Kim, "12-inch wafer-scale CMOS active-pixel sensor for digital mammography", Proc. SPIE 7961, Medical Imaging 2011: Physics of Medical Imaging, vol. 7961, Mar. 2011, Art. no. 79610O.
13 M.-S. Shin, J.-B. Kim, Y.-R. Jo, M.-K. Kim, B.-C. Kwak, H.-C. Seol, and O.-K. Kwon, "CMOS X-ray detector with column-parallel 14.3-bit extended- counting ADCs", IEEE Trans. Electron Devices, vol. 60, no. 3, pp. 1169-1177, Mar. 2013.   DOI
14 Y.-R. Jo, S.-K. Hong, and O.-K. Kwon, "CMOS flat-panel X-ray detector with dual-gain active pixel sensors and column-parallel readout circuits", IEEE Trans. Nucl. Sci., vol. 61, no. 5, pp. 2472-2479, Oct. 2014.   DOI
15 J.-B. Kim, S.-K. Hong, and O.-K. Kwon, "A high-speed wafer-scale CMOS X-ray detector with column-parallel ADCs using oversampling binning method", IEEE Trans. Electron Devices, vol. 62, no. 3, pp. 888-895, Mar. 2015.   DOI
16 X. Liu, A. Byczko, M. Choi, L. Chung, H. Do, B. Fowler, R. Ispasoiu, K. Joshi, T. Miller, A. Nagy, D. Reaves, B. Rodricks, D. Teeter, G. Wang, and F. Xiao, "CMOS digital intraoral sensor for X-ray radiography", Proc. SPIE, 2011, p. 79614M.
17 Y.-R. Jo, S.-K. Hong, and O.-K. Kwon, "Atileable CMOS X-ray line detector using time-delay-integration with pseudo multi sampling for large-sized dental X-ray imaging systems", IEEE Trans. Electron Devices, vol. 64, no. 1, pp. 211-216, Jan. 2017.   DOI
18 S. Naday, E. F. Bullard, S. Gunn, J. E. Brodrick, E. O. O'Tuairisg, A. McArthur, H. Amin, M. B. Williams, P. G. Judy, and A. Konstantinidis, "Optimised breast tomosynthesis with a novel CMOS flat panel detector", Proc. 10th Int. Workshop Digit. Mammography, vol. 6136, LNCS, Jun. 2010, pp. 428-435.
19 D. Scheffer, "A wafer scale active pixel CMOS image sensor for generic X-ray radiology", Proc. SPIE, 2007, p. 65100O.
20 S. K. Heo, S. K. Park, S. H. Hwang, D. A. Im, J. Kosonen, T. W. Kim, S. Yun, and H. K. Kim, "Development of a large-area CMOS-based detector for real-time X-ray imaging", Proc. SPIE, 2010, p. 76223T.
21 R. Reshef, T. Leitner, S. Alfassi, E. Sarig, N. Golan, O. Berman, A. Fenigstein, H. Wolf, G. Hevel, S. Vilan, and A. Lahav, "Large format medical X-ray CMOS image sensor for high resolution high frame rate applications", Proc. Int. Image Sens. Workshop, Bergen, Norway, Jun. 2009.
22 S. Lim, J. Lee, D. Kim, and G. Han, "A High-Speed CMOS Image Sensor With Column-Parallel Two-Step Single-Slope ADCs", IEEE Trans. Electron Devices, vol. 56, no. 3, pp. 393-398, Mar. 2009.   DOI
23 S. Lim, J. Cheon, Y. Chae, W. Jung, D.-H. Lee, M. Kwon, K. Yoo, S. Ham, and G. Han, "A 240-frames/s 2.1-Mpixel CMOS image sensor with column-shared cyclic ADCs", IEEE J. Solid-State Circuits, vol. 46, no. 9, pp. 2073-2083, Sep. 2011.   DOI
24 C. C.-M. Liu, M. M. Mhala, C.-H. Chang, H. Tu, P.-S. Chou, C. Chao, and F.-L. Hsueh, "A 1.5V 33Mpixel 3D-Stacked CMOS Image Sensor with Negative Substrate Bias", Proc. IEEE Int. Solid-State Circuits Conf., pp. 124-125, 2016.
25 S. Yoshihara, Y. Nitta, M. Kikuchi, K. Koseki, Y. Ito, Y. Inada, S. Kuramochi, H. Wakabayashi, M. Okano, H. Kuriyama, J. Inutsuka, A. Tajima, T. Nakajima, Y. Kudoh, F. Koga, Y. Kasagi, S. Watanabe, and T. Nomoto, "A 1/1.8-inch 6.4 MPixel 60 frames/s CMOS Image Sensor With Seamless Mode Change", IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2998-3006, Dec. 2006.   DOI
26 T. Toyama, K. Mishina, H. Tsuchiya, T. Ichikawa, H. Iwaki, Y. Gendai, H. Murakami, K. Takamiya, H. Shiroshita, Y. Muramatsu, and T. Furusawa, "A 17.7Mpixel 120fps CMOS Image Sensor with 34.8Gb/s Readout", Proc. IEEE Int. Solid-State Circuits Conf., pp. 420-421, 2011.
27 S. Okura, O. Nishikido, Y. Sadanaga, Y. Kosaka, N. Araki, K. Ueda, and F. Morishita, "A 3.7 M-Pixel 1300-fps CMOS Image Sensor With 5.0 G-Pixel/s High-Speed Readout Circuit", IEEE J. Solid-State Circuits, vol. 50, no. 4, pp. 1016-1024, Apr. 2015.   DOI
28 D. Zhong, Y. Han, J. Sun, Q. Zhou, R. C. C. Cheung, and W. Sui, "A perfectly current matched charge pump with wide dynamic range for ultra low voltage application", IEICE ELEX, vol. 11, no. 23, pp. 1-6, Nov. 2014.
29 M Jalalifar and G-S Byun, "Near-threshold charge pump circuit using dual feedback loop", IET Electron. Lett., vol. 49, no. 23, pp. 1436-1438, Nov. 2013.   DOI
30 N. Joram, R. Wolf, and F. Ellinger, "High swing PLL charge pump with current mismatch reduction", IET Electron. Lett., vol. 50, no. 9, pp. 661-663, Apr. 2014.   DOI
31 M. Johnson and E. Hudson, "A variable delay line PLL for CPU-coprocessor synchronization", IEEE J. Solid-State Circuits, vol. 23, no. 10, pp. 1218-1223, Oct. 1988.   DOI
32 D. A. Johns and K. Martin, Analog Integrated Circuit Design, New York:Wiley, 1997.
33 I. A. Young, J. K. Greason, and K. L. Wong, "A PLL Clock Generator with 5 to 110MHz of Lock Range for Microprocessors", IEEE J. Solid-State Circuits, vol. 27, no. 11, pp. 1599-1607, Nov. 1992.   DOI
34 Larsson, P., "A 2.1600-MHz CMOS clock recovery PLL with low-Vdd capability", IEEE J. Solid-State Circuits, vol. 34, no. 12, pp. 1951-1960, Dec. 1999.   DOI