• 제목/요약/키워드: Petrov-Galerkin method

검색결과 48건 처리시간 0.024초

동차선형 유한요소와 Fractional Step방법을 이용한 열유동장의 해석 (Analysis of Thermal flow Field Uing Equal Order Linear Finite Element and Fractional Step Method)

  • 최형권;유정열
    • 대한기계학회논문집
    • /
    • 제19권10호
    • /
    • pp.2667-2677
    • /
    • 1995
  • A new numerical algorithm using equal order linear finite element and fractional step method has been developed which is capable of analyzing unsteady fluid flow and heat transfer problems. Streamline Upwind Petrov-Galerkin (SUPG) method is used for the weighted residual formulation of the Navier-Stokes equations. It is shown that fractional step method, in which pressure term is splitted from the momentum equation, reduces computer memory and computing time. In addition, since pressure equation is derived without any approximation procedure unlike in the previously developed SIMPLE algorithm based FEM codes, the present numerical algorithm gives more accurate results than them. The present algorithm has been applied preferentially to the well known bench mark problems associated with steady flow and heat transfer, and proves to be more efficient and accurate.

Free Vibration and Dynamic Response Analysis by Petrov-Galerkin Natural Element Method

  • Cho, Jin-Rae;Lee, Hong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1881-1890
    • /
    • 2006
  • In this paper, a Petrov-Galerkin natural element method (PG-NEM) based upon the natural neighbor concept is presented for the free vibration and dynamic response analyses of two-dimensional linear elastic structures. A problem domain is discretized with a finite number of nodes and the trial basis functions are defined with the help of the Voronoi diagram. Meanwhile, the test basis functions are supported by Delaunay triangles for the accurate and easy numerical integration with the conventional Gauss quadrature rule. The numerical accuracy and stability of the proposed method are verified through illustrative numerical tests.

Meshless local Petrov-Galerkin method for rotating Rayleigh beam

  • Panchore, Vijay
    • Structural Engineering and Mechanics
    • /
    • 제81권5호
    • /
    • pp.607-616
    • /
    • 2022
  • In this work, the free vibration problem of a rotating Rayleigh beam is solved using the meshless Petrov-Galerkin method which is a truly meshless method. The Rayleigh beam includes rotatory inertia in addition to Euler-Bernoulli beam theory. The radial basis functions, which satisfy the Kronecker delta property, are used for the interpolation. The essential boundary conditions can be easily applied with radial basis functions. The results are obtained using six nodes within a subdomain. The results accurately match with the published literature. Also, the results with Euler-Bernoulli are obtained to compare the change in higher natural frequencies with change in the slenderness ratio (${\sqrt{A_0R^2/I_0}}$). The mass and stiffness matrices are derived where we get two stiffness matrices for the node and boundary respectively. The non-dimensional form is discussed as well.

Combined Streamline Upwind Petrov Galerkin Method and Segregated Finite Element Algorithm for Conjugate Heat Transfer Problems

  • Malatip Atipong;Wansophark Niphon;Dechaumphai Pramote
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1741-1752
    • /
    • 2006
  • A combined Streamline Upwind Petrov-Galerkin method (SUPG) and segregated finite element algorithm for solving conjugate heat transfer problems where heat conduction in a solid is coupled with heat convection in viscous fluid flow is presented. The Streamline Upwind Petrov-Galerkin method is used for the analysis of viscous thermal flow in the fluid region, while the analysis of heat conduction in solid region is performed by the Galerkin method. The method uses the three-node triangular element with equal-order interpolation functions for all the variables of the velocity components, the pressure and the temperature. The main advantage of the presented method is to consistently couple heat transfer along the fluid-solid interface. Four test cases, which are the conjugate Couette flow problem in parallel plate channel, the counter-flow in heat exchanger, the conjugate natural convection in a square cavity with a conducting wall, and the conjugate natural convection and conduction from heated cylinder in square cavity, are selected to evaluate efficiency of the presented method.

Capacitance matrix method for petrov-galerkin procedure

  • Chung, Sei-Young
    • 대한수학회지
    • /
    • 제32권3호
    • /
    • pp.461-470
    • /
    • 1995
  • In this paper a capacitance matrix method is developed for the Poisson equation on a rectangle $$ (1-1) Lu \equiv -(u_{xx} + u_{yy} = f, (x, y) \in \Omega \equiv (0, 1) \times (0, 1) $$ with the homogeneous Dirichlet boundary condition $$ (1-2) u = 0, (x, y) \in \partial\Omega $$ where $\partial\Omega$ is the boundary of the region $\Omega$.

  • PDF

페트로프-갤러킨 자연요소법 : III. 기하학적 비선형 해석 (The Petrov-Galerkin Natural Element Method : III. Geometrically Nonlinear Analysis)

  • 조진래;이홍우
    • 한국전산구조공학회논문집
    • /
    • 제18권2호
    • /
    • pp.123-131
    • /
    • 2005
  • 기존의 부브노프-갤러킨 자연요소법(BG-NEM)에서 발생하는 수치적분의 부정확성을 페트로프-갤러킨 자연요소법(PG-NEM)에서 완벽히 해결할 수 있음을 저자들의 이전 논문에서 확인하였다. 본 논문에서는 PG-NEM을 확장하여 2차원 기하학적 비선형 문제를 다룬다. 해석을 위해 선형화된 토탈 라그랑지 정식화를 도입하고 PG-NEM을 적용하여 근사화한다. 각 하중 단계마다 절점은 새로운 위치로 갱신되며, 재분포된 절점을 바탕으로 형상함수를 새롭게 구성한다. 이러한 과정은 PG-NEM이 더 정확하고 안정적인 근사함수를 제공하는 것을 가능하게 한다. 개발된 포트란 시험 프로그램을 이용하여 대표적인 수치 예제를 수행하였으며, 수치결과로부터 PG-NEM이 효율적이고 정확하게 대변형 문제를 근사화하는 것을 확인하였다.

Computation of 2-D mixed-mode stress intensity factors by Petrov-Galerkin natural element method

  • Cho, Jin-Rae
    • Structural Engineering and Mechanics
    • /
    • 제56권4호
    • /
    • pp.589-603
    • /
    • 2015
  • The mixed-mode stress intensity factors of 2-D angled cracks are evaluated by Petrov-Galerkin natural element (PG-NE) method in which Voronoi polygon-based Laplace interpolation functions and CS-FE basis functions are used for the trial and test functions respectively. The interaction integral is implemented in a frame of PG-NE method in which the weighting function defined over a crack-tip integral domain is interpolated by Laplace interpolation functions. Two Cartesian coordinate systems are employed and the displacement, strains and stresses which are solved in the grid-oriented coordinate system are transformed to the other coordinate system aligned to the angled crack. The present method is validated through the numerical experiments with the angled edge and center cracks, and the numerical accuracy is examined with respect to the grid density, crack length and angle. Also, the stress intensity factors obtained by the present method are compared with other numerical methods and the exact solution. It is observed from the numerical results that the present method successfully and accurately evaluates the mixed-mode stress intensity factors of 2-D angled cracks for various crack lengths and crack angles.

페트로프-갤러킨 자연요소법 : II. 선형 정탄성 해석 (The Petrov-Galerkin Natural Element Method : II. Linear Elastostatic Analysis)

  • 조진래;이홍우
    • 한국전산구조공학회논문집
    • /
    • 제18권2호
    • /
    • pp.113-121
    • /
    • 2005
  • 무요소기법이 공통적으로 내재하고 있는 수치적분의 부정확성을 해결하기 위해, 페트로프-갤러킨 자연요소법이라 불리는 향상된 자연요소법을 제안한다. 제안된 방법은 라플라스 기저함수를 시도 형상함수로 사용하는 반면, 시험 형상함수로서 델라우니 삼각형이 지지영역이 되는 함수를 새롭게 정의한다. 이러한 접근은 통상적인 적분영역과 적분함수 지지영역간의 불일치를 제거하게 하며, 이는 적용이 편리할 뿐만 아니라 수치적분의 정확성을 보장한다 본 논문에서는 2차윈 선형 탄성의 대표적인 검증문제를 통하여 제안된 방법의 타당성을 검증한다. 비교를 위해 기존의 부브노프-갤러킨 자연요소법과 일정 변형률 유한요소법을 이용한 해석을 동시에 수행한다. 조각 시험과 수렴율 평가를 통해 제안된 기법의 우수성을 확인할 수 있다.

페트로프-갤러킨 자연요소법에 의한 기하하적 비선형 해석 (Geometrically Nonlinear Analysis using Petrov-Galerkin Natural Element Method Natural Element Method)

  • 이홍우;조진래
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.333-340
    • /
    • 2004
  • This paper deals with geometric nonlinear analyses using a new meshfree technique which improves the numerical integration accuracy. The new method called the Petrov-Galerkin natural element method (PGNEM) is based on the Voronoi diagram and the Delaunay triangulation which is based on the same concept used for conventional natural element method called the Bubnov-Galerkin natural element method (BGNEM). But, unlike BGNEM, the test shape function is differently chosen from the trial shape function. In the linear static analysis, it is ensured that the numerical integration error of the PGNEM is remarkably reduced. In this paper, the PGNEM is applied to large deformation problems, and the accuracy of the proposed numerical technique is verified through the several examples.

  • PDF

준설토 유동해석을 위한 유한요소 수식화 (Numerical Formulation for Flow Analysis of Dredged Soil)

  • 신호성
    • 한국지반환경공학회 논문집
    • /
    • 제15권3호
    • /
    • pp.41-48
    • /
    • 2014
  • 준설토에 대한 연구는 주로 준설토의 1차원 침강 및 자중압밀 특성을 파악하는 실험적 연구가 진행되었다. 하지만 양질의 준설지반 확보를 위한 효과적인 투기장의 설계와 배출수에 의한 환경오염을 최소화하기 위해서는 준설토의 투기에 의한 유동특성의 체계적인 연구가 필요하다. 본 연구에서는 준설토 투기장의 펌핑에 의한 토사의 유동 형상을 모사하기 위하여 준설토사를 단일상으로 가정하고 연속 방정식을 유도하여 좌표축에 따른 힘 평형 방정식을 유도하였다. 준설토장의 3차원 거동 해석을 위한 컴퓨터 연산 부하와 모델링 소요시간을 최적화하기 위하여, 토체의 깊이 방향으로 적분을 수행하는 깊이 적분 방법을 지배 방정식에 적용하여, 3차원적 지형조건을 고려할 수 있도록 하였다. 지배 방정식의 보간함수를 이용한 공간분할에서 Petrov-Galerkin 수식화 기법을 적용하였다. 일반화된 사다리꼴 법칙으로 시간적분을 수행하고 Newton의 반복과정을 이용할 수 있도록 근사화시켰다. 가중행렬은 DG과 CDG 기법을 적용하였으며, 준설토 유동해석에서 가중행렬에 따른 수치적인 안정성을 평가하기 위하여 사각형 기둥 슬럼프 시뮬레이션을 수행하였다. 수치기법에 대한 비교 분석 결과는 DG 기법을 적용한 SU/PG 수식화가 유사진동을 최소화시키는 가장 안정적인 수치해석결과를 보여주는 것으로 나타났다.