Browse > Article
http://dx.doi.org/10.12989/sem.2022.81.5.607

Meshless local Petrov-Galerkin method for rotating Rayleigh beam  

Panchore, Vijay (Department of Mechanical Engineering, Maulana Azad National Institute of Technology)
Publication Information
Structural Engineering and Mechanics / v.81, no.5, 2022 , pp. 607-616 More about this Journal
Abstract
In this work, the free vibration problem of a rotating Rayleigh beam is solved using the meshless Petrov-Galerkin method which is a truly meshless method. The Rayleigh beam includes rotatory inertia in addition to Euler-Bernoulli beam theory. The radial basis functions, which satisfy the Kronecker delta property, are used for the interpolation. The essential boundary conditions can be easily applied with radial basis functions. The results are obtained using six nodes within a subdomain. The results accurately match with the published literature. Also, the results with Euler-Bernoulli are obtained to compare the change in higher natural frequencies with change in the slenderness ratio (${\sqrt{A_0R^2/I_0}}$). The mass and stiffness matrices are derived where we get two stiffness matrices for the node and boundary respectively. The non-dimensional form is discussed as well.
Keywords
mechanical vibration; meshless Petrov-Galerkin method; radial basis function; Rotating Rayleigh beam;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Gunda, J.B. and Ganguli, R. (2007), "Stiff-string basis functions for vibration analysis of high speed rotating beams", J. Appl. Mech., 75(2), 0245021-0245025. https://doi.org/10.1115/1.2775497.   DOI
2 Hadji, L., Zouatnia, N. and Kassoul, A. (2017), "Wave propagation in functionally graded beams using various higher-order shear deformation beams theories", Struct. Eng. Mech., 62(2), 143-149. https://doi.org/10.12989/sem.2017.62.2.143.   DOI
3 Johnson, W. (1980), Helicopter Theory, Dover Publications, New York, U.S.A.
4 Li, Q., Soric, J., Jarak, T. and Atluri, S.N. (2005), "A locking-free meshless local Petrov-Galerkin formulation for thick and thin plates", J. Comput. Phys., 208(1), 116-133. https://doi.org/10.1016/j.jcp.2005.02.008.   DOI
5 Panchore, V., Ganguli, R. and Omkar, S.N. (2015), "Meshless local Petrov-Galerkin method for rotating Euler-Bernoulli beam", Comput. Model. Eng. and Sci., 104(5), 353-373.
6 Andreaus, U., Batra, R.C. and Porfiri, M. (2005), "Vibrations of cracked Euler-Bernoulli beams using Meshless Local Petrov-Galerkin (MLPG) method", Comput. Model. Eng. Sci., 9(2), 111-131.
7 Atluri, S.N., Cho, J.Y. and Kim, H.G. (1999), "Analysis of thin beams, using the meshless local Petrov-Galerkin method, with generalized moving least squares interpolations", Comput. Mech., 24(5), 334-347. https://doi.org/10.1007/s004660050456.   DOI
8 Banerjee, J.R. and Jackson, D.R. (2013), "Free vibration of a rotating tapered Rayleigh beam: A dynamic stiffness method of solution", Comput. Struct., 124, 11-20. https://doi.org/10.1016/j.compstruc.2012.11.010.   DOI
9 Rossit, C.A., Bambill, D.V. and Gilardi, G.J. (2017), "Free vibrations of AFG cantilever tapered beams carrying attached masses", Struct. Eng. Mech., 61(5), 685-691. https://doi.org/10.12989/sem.2017.61.5.685.   DOI
10 Atluri, S.N. (2004), The Meshless Method (MLPG) for Domain and BIE Discretizations, Tech Science Press, Forsyth, GA.
11 Bisplinghoff, R.L., Ashley, H. and Halfman, R.L. (1996), Aeroelasticity, Dover Publications, New York, U.S.A.
12 Elgohary, T.A., Dong, L., Junkins, J.L. and Atluri, S.N. (2014), "Time domain inverse problems in nonlinear systems using collocation & radial basis functions", Comput. Model. Eng. Sci., 100(1), 59-84.
13 Chung, J. and Yoo, H.H. (2002), "Dynamic analysis of a rotating cantilever beam by using the finite element method", J. Sound Vib., 249(1), 147-164. https://doi.org/10.1006/jsvi.2001.3856.   DOI
14 Liu, G.R. (2003), Meshfree Methods, CRC Press, New York, U.S.A.
15 Jaworska, I. and Orkisz, J. (2018), "On nonlinear analysis by the multipoint meshless FDM", Eng. Anal. Bound. Elem., 92, 241-243. https://doi.org/10.1016/j.enganabound.2017.11.018.   DOI
16 Kaghazian, A., Hajnayeb, A. and Foruzande, H. (2017), "Free vibration analysis of a piezoelectric nanobeam using nonlocal elasticity theory", Struct. Eng. Mech., 61(5), 617-624. https://doi.org/10.12989/sem.2017.61.5.617.   DOI
17 Kim, Y.W. (2017), "Analytic solution of Timoshenko beam excited by real seismic support motions", Struct. Eng. Mech., 62(2), 247-258. https://doi.org/10.12989/sem.2017.62.2.247.   DOI
18 Long, S. and Atluri, S.N. (2002), "A meshless local Petrov-Galerkin method for solving the bending problem of a thin plate", Comput. Model. Eng. Sci., 3(1), 53-63.
19 Ebrahimi, F. and Barati, M.R. (2017), "Vibration analysis of embedded size dependent FG nanobeams based on third-order shear deformation beam theory", Struct. Eng. Mech., 61(6), 721-736. https://doi.org/10.12989/sem.2017.61.6.721.   DOI
20 Zhang, Y., Yang, X. and Zhang, W. (2020), "Modeling and stability analysis of a flexible rotor based on the Timoshenko beam theory", Acta Mechanica Solida Sinica, 33(5), 281-293. https://doi.org/10.1007/s10338-019-00146-y.   DOI
21 Putter, S. and Manor, H. (1978), "Natural frequencies of radial rotating beams", J. Sound Vib., 56(2), 175-185. https://doi.org/10.1016/S0022-460X(78)80013-3.   DOI
22 Nagaraj, V.T. and Shanthakumar, P. (1975), "Rotor blade vibration by the Galerkin finite element method", J. Sound Vib., 43(3), 575-577. https://doi.org/10.1016/0022-460X(75)90013-9.   DOI
23 Panchore, V., Ganguli, R. and Omkar, S.N. (2015), "Meshless local Petrov-Galerkin method for rotating Timoshenko beam: A locking-free shape function formulation", Comput. Model. Eng. Sci., 108(4), 215-237.
24 Panchore, V., Ganguli, R. and Omkar, S.N. (2017), "Galerkin Method for a rotating Euler-Bernoulli beam", Int. J. Comput. Meth. Eng. Sci. Mech., 19(1), 11-21. https://doi.org/10.1080/15502287.2017.1378772.   DOI
25 Raju, I.S., Phillips, D.R. and Krishnamurthy, T. (2004), "A radial basis function approach in the meshless local Petrov-Galerkin method for Euler-Bernoulli beam problems'', Comput. Mech., 34(6), 464-474. https://doi.org/10.1007/s00466-004-0591-z.   DOI
26 Reddy, J.N. (2005), An Introduction to the Finite Element Method, Tata McGraw-Hill, New York, U.S.A.
27 Setoodeh, A. and Rezae, M. (2017), "Large amplitude free vibration analysis of functionally graded nano/micro beams on nonlinear elastic foundation", Struct. Eng. Mech., 61(2), 209-220. https://doi.org/10.12989/sem.2017.61.2.209.   DOI
28 Giurgiutiu, V. and Stafford, R.O. (1977), "Semi-analytical methods for frequencies and mode shapes of rotor blades", Vertica, 1, 291-306.
29 Sageresan, N. and Drathi, R. (2008), "Crack propagation in concrete using meshless method", Comput. Model. Eng. Sci., 32(2),103-112.
30 Panchore, V. and Ganguli, R. (2017), "Quadratic B-spline finite element method for a rotating non-uniform Rayleigh beam", Struct. Eng. Mech., 61(6), 765-773. https://doi.org/10.12989/sem.2017.61.6.765.   DOI
31 Sushma, D. and Ganguli, R. (2012), "A collocation approach for finite element basis functions for Euler-Bernoulli beams undergoing rotations and transverse bending vibration", Int. J. Comput. Meth. Eng. Sci. Mech., 13(4), 290-307. https://doi.org/10.1080/15502287.2012.682194.   DOI
32 Vinod, K.G., Gopalakrishnan, S. and Ganguli, R. (2007), "Free vibration and wave propagation analysis of uniform and tapered rotating beams using spectrally formulated finite elements", Int. J. Solid. Struct., 44(18), 5875-5893. https://doi.org/10.1016/j.ijsolstr.2007.02.002.   DOI
33 Wang, G. and Wereley, N.M. (2004), "Free vibration analysis of rotating blades with uniform tapers", AIAA J., 42(12), 2429-2437. https://doi.org/10.2514/1.4302.   DOI
34 Chekab, A.A. and Sani, A.A. (2017), "Novel techniques for improving the interpolation functions of Euler-Bernoulli beam", Struct. Eng. Mech., 63(1), 11-21. https://doi.org/10.12989/sem.2017.63.1.011.   DOI
35 Atluri, S.N. and Shen, S. (2002), "The Meshless Local Petrov-Galerkin (MLPG) method: A simple & less-costly alternative to the finite element and boundary element methods", Comput. Model. Eng. Sci., 3(1), 11-51. https://doi.org/10.3970/cmes.2002.003.011.   DOI
36 Bauchau, O.A. and Hong, C.H. (1987), "Finite element approach to rotor blade modeling", J. Am. Helicopt. Soc., 32(1), 60-67. https://doi.org/10.4050/JAHS.32.60.   DOI
37 Bhat, S. and Ganguli, R. (2018), "Non-rotating beams isospectral to rotating Rayleigh beams", Int. J. Mech. Sci., 142, 440-455. https://doi.org/10.1016/j.ijmecsci.2018.04.049.   DOI
38 Wen, P.H., Aliabadi, M.H. and Liu, Y.W. (2008), "Meshless Method for Crack Analysis in Functionally Graded Materials with Enriched Radial Base Functions", Comput. Model. Eng. Sci., 30(3), 133-147.
39 Tan, G., Shan, J., Wu, C. and Wang, W. (2017), "Free vibration analysis of cracked Timoshenko beams carrying spring-mass systems", Struct. Eng. Mech., 63(4), 551-565. https://doi.org/10.12989/sem.2017.63.4.551.   DOI
40 Bokaian, A. (1990), "Natural frequencies of beams under tensile axial loads", J. Sound Vib., 142(3), 481-498. https://doi.org/10.1016/0022-460X(90)90663-K.   DOI
41 Cui, X.Y., Liu, G.R., Li, G.Y. and Zheng, G. (2008), "A rotation free formulation for static and free vibration analysis of thin beams using gradient smoothing technique", Comput. Model. Eng. Sci., 38(3), 217-229.
42 Most, T. and Bucher, C. (2005), "A moving least squares weighting function for the Element-free Galerkin method which almost fulfills essential boundary conditions", Struct. Eng. Mech., 21(3), 315-332. https://doi.org/10.12989/sem.2005.21.3.315.   DOI
43 Hoa, S.V. (1979), "Vibration of a rotating beam with tip mass", J. Sound Vib., 67(3), 369-381. https://doi.org/10.1016/0022-460X(79)90542-X.   DOI
44 Gunda, J.B., Gupta, R.K. and Ganguli, R. (2008), "Hybrid stiff-string-polynomial basis functions for vibration analysis of high speed rotating beams", Comput. Struct., 87(3-4), 254-265. https://doi.org/10.1016/j.compstruc.2008.09.008.   DOI