Browse > Article

Free Vibration and Dynamic Response Analysis by Petrov-Galerkin Natural Element Method  

Cho, Jin-Rae (School of Mechanical Engineering, Pusan National University)
Lee, Hong-Woo (School of Mechanical Engineering, Pusan National University)
Publication Information
Journal of Mechanical Science and Technology / v.20, no.11, 2006 , pp. 1881-1890 More about this Journal
Abstract
In this paper, a Petrov-Galerkin natural element method (PG-NEM) based upon the natural neighbor concept is presented for the free vibration and dynamic response analyses of two-dimensional linear elastic structures. A problem domain is discretized with a finite number of nodes and the trial basis functions are defined with the help of the Voronoi diagram. Meanwhile, the test basis functions are supported by Delaunay triangles for the accurate and easy numerical integration with the conventional Gauss quadrature rule. The numerical accuracy and stability of the proposed method are verified through illustrative numerical tests.
Keywords
Petrov-Galerkin Natural Element Method; Voronoi Polygon; Delaunay Triangle; Free Vibration; Dynamic Response; Convergence Rate;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Sukumar, N., Moran, A. and Belytschko, T., 1998, 'The Natural Element Method in Solid Mechanics,' Int. J. Numer. Methods Engng., Vol. 43, pp. 839-887   DOI   ScienceOn
2 Zu, T. and Atluri, S. N., 1998, 'A Modified Collocation Method and a Penalty Formulation for Enforcing the Essential Boundary Condition in the Element Galerkin Method,' Computational Mechanics, Vo. 21, pp. 211- 222   DOI
3 Sibson, R., 1980, 'A Vector Identity for Dirichlet Tessellation,' Mathematical Proceedings of Cambridge Philosophical Society, Vol. 80, pp. 151-155
4 Melenk, J. M. and Babuska, I., 1996, 'The Partition of Unity Finite Element Method: Basic Theory and Applications,' Comput. Methods Appl. Mech. Engrg., Vol. 139, pp.289-314   DOI   ScienceOn
5 Nayroles, B., 1992, 'Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Elements,' Computational Mechanics, Vol. 10, pp. 307-318   DOI
6 Petyt, M., 1990, Introduction to Finite Element Vibration Analysis, Cambridge University Press, New York
7 Duarte, C. A. and Oden, J. T., 1996, 'An h-p Adaptive Method using Clouds,' Comput. Methods in Appl. Mech. Engrg., Vol. 139, pp.237-262   DOI   ScienceOn
8 Farin, G., 1990, 'Surface over Dirichlet Tessellations,' Computer Aided Geometric Design, Vol. 7, No. 1-4, pp.281-292   DOI   ScienceOn
9 Liu, W. K., Jun, S. and Zhang, Y. F., 1995, 'Reproducing Kernel Particle Methods,' Int. J. Numer. Methods Fluids, Vol. 20, pp. 1081-1106   DOI   ScienceOn
10 Cho, J. R. and Lee, H. W., 2006, '2-D Large Deformation Analysis of Nearly Incompressible Body by Natural Element Method,' Computers & Structures, Vol. 84, pp. 293-304   DOI   ScienceOn
11 Bathe, K. J., 1996, Finite Element Procedures, Prentice- Hall, Singapore
12 Cho, J. R. and Lee, H. W., 2006, 'A Petrov Galerkin Natural Element Method Securing the Numerical Integration Accuracy,' J. Mech. Sci. Technol., Vol. 20, No.1, pp. 94-109   과학기술학회마을   DOI
13 Belytschko, T., Lu, Y. Y. and Gu, L., 1994, 'Element-free Galerkin Methods,' Int. J. Numer. Methods Engng., Vol. 37, pp. 229-256   DOI   ScienceOn
14 Braun, J. and Sam bridge, M., 1995, 'A Numerical Method for Solving Differential Equations on Highly Irregular Evolving Grids,' Nature, Vol. 376, pp. 655-660   DOI   ScienceOn
15 Belikov, V. V., Ivanov, V. D., Kontorovich, K. K., Korytnik, S. A. and Semenov, A. Su, 1997, 'The Non-Sibsonian Interpolation; a New Method of Interpolation of the Values of a Function on an Arbitrary Set of Points,' Computational Mathematics and Mathematical Physics, Vol. 37, pp.9-15