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Free Vibration and Dynamic Response Analysis
by Petrov-Galerkin Natural Element Method

Jin-Rae Cho*, Hong-Woo Lee
School of Mechanical Engineering, Pusan National University,
Kumjung—- Ku, Busan 609-735, Korea

In this paper, a Petrov-Galerkin natural element method (PG-NEM) based upon the natural
neighbor concept is presented for the free vibration and dynamic response analyses of two-

dimensional linear elastic structures. A problem domain is discretized with a finite number of
nodes and the trial basis functions are defined with the help of the Voronoi diagram. Meanwhile,
the test basis functions are supported by Delaunay triangles for the accurate and easy numerical
integration with the conventional Gauss quadrature rule. The numerical accuracy and stability

of the proposed method are verified through illustrative numerical tests.
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1. Introduction

In order to minimize the inherent drawbacks of
FEM, such as the element connectivity preserva-
tion, the numerical quality deterioration caused
by the excessive mesh distortion and the trouble-
some mesh adaptation, the meshfree method was
introduced by substituting finite elements with
grid points (Nayroles, 1992). However, the grid-
point-centered sub-domains in most meshfree
methods (Belytschko et al., 1994 ; Liu et al., 1995 ;
Duarte and Oden, 1996 ; Melenk and Babuska,
1996) are not perfectly separated but overlapped
so that the grid-point-based basis functions in
these methods do not obey the Kronecker delta
property. Thus, the essential boundary treatment
should require additional techniques (Belytschko
et al., 1994 ; Zu and Atluri, 1998). Another criti-
cal issue of these methods is the need of back-
ground cell to utilize the conventional Gauss
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quadrature rule for the numerical integration,
owing to the irregular and overlapped supports
of basis functions. What is worse, the numerical
integration accuracy is remarkably influenced by
how to construct the background cell.

Recently, the natural element method originat-
ed by Braun and Sambridge (1995) has been in-
tensively explored as a possible solution to these
drawbacks of meshfree methods (Sukumar et al.,
1998). In which, the problem domain is discretiz-
ed with a finite number of grid points, as in most
meshfree methods. But, it uses Laplace interpola-
tion functions (Belikov et al., 1997) defined with
the help of Voronoi polygons and Delaunay
triangles for both trial and test basis functions
according to the natural neighbors and Bubnov-
Galerkin approximation. These functions strictly
satisfy the Kronecker delta property and this pro-
perty allows the easy and accurate imposition of
essential boundary condition. Furthermore, the
natural element method does not require extra
effort for constructing the background cell, be-
cause it utilizes a set of Delaunay triangles, which
are identified automatically in the process of the
basis function definition, as its background cell.
Nevertheless, it suffers from the numerical inte-
gration difficulty as ever owing to the inconsist-
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ency of the basis function supports with Delaunay
triangles.

On the other hand, in the Petrov-Galerkin
natural element method (Cho and Lee, 2006a)
presented in this paper the test basis function is
differently defined such that its support is iden-
tical with a union of Delaunay triangles, while
Laplace interpolation function is taken for the
trial basis function. Then, the above-mentioned
inconsistency of Delaunay triangles with the sup-
ports of integrand functions contained in both
stiffness matrix and load vector completely disap-
pears. Thus, the application of the conventional
Gauss quadrature rule to the background cell
composed of Delaunay triangles can be accurately
and simply performed.

This paper is an extension of our recent work
(Cho and Lee, 2006a ; 2006b) to the free vibra-
tion and dynamic response analysis of 2-D linear
elastic structures. The numerical accuracy and
stability of the proposed method in the free vi-
bration and dynamic response analysis are exam-
ined through illustrative numerical experiments.
The structural dynamic problem is formulated
with the Rayleigh-type damping model and time-
integrated by the implicit Newmark scheme.

2. Natural Neighbor Interpolation
2.1 Voronoi polygons and delaunay triangles

For the sake of easy representation of the Voronoi
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diagram and the Delaunay triangulation, we
consider a two-dimensional Euclidean space %2
Referring to Fig. 1(a), we assume that a set 3
of distinct points called nodes: 8={xi,x2, ",
xv | x,ER2} is given in R then the first-order
Voronoi diagram V; can be defined with N
Voronoi polygons wy such that Vi={ w1, wz, ",
wn | U U wy =%} By denoting d (x,x:) be
the Euclidean metric in 32, the Voronoi polygon
w; corresponding to the 7-th node is defined by

wr={xER: d(x,x;) <d(x,x;),VJ*I} (1)

The [-th Voronoi polygon @; is a sub-domain
with its sides that perpendicularly bisect the lines
connecting X; and the adjacent neighbor nodes
of /-th node x;. A Voronoi polygon is uniquely
defined to each node, and vertex points of each
Voronoi polygon are called the Voronoi vertices.
When node is located on the boundary of the
convex hull 29 R) of N points its Voronoi poly-
gon becomes to be unbounded, referring to Fig. |
(a), otherwise its Voronoi polygon is bounded.
As shown in Fig. 1(b), the Delaunay triangula-
tion as a geometric dual of the Voronoi diagram
generates a set 5 of Delaunay triangles Ak (x)
such that

A (X);UAme =R, J=K+L} (2)

where J, K and L refer to the nodes x;, Xx and
x: in ¥ which become three vertices of Ajx:.
In general, the convex hull becomes the problem

Delaunay
e circumcicle

Fig. 1 Representation: (a) Voronoi diagram and Delaunay triangulation ; (b) Delaunay circumcircles
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domain: Q%(R)=£. Referring to Fig. 1(a),
these three vertex nodes should be chosen such
that three corresponding Voronoi polygons share
common edges, and circumcircle defined by these
three nodes is called the Delaunay circumcircle
cir (Aje) . An important property of the Delaunay
triangulation is the empty circumcircle criterion
implying that individual Delaunay circumcircles
should not contain any node in 8. Also, it is
worth to note that the centers of these circum-
circles are identical to the Voronoi vertices.

Referring to Fig. 1(a), the Voronoi polygon w;
shares its sides with five Voronoi polygons, and
such neighborhood polygons are called the natu-
ral neighbors of w;. In the same manner, the five
nodes within five natural neighbors of @, are de-
fined as the natural neighbors of the node x;.
These natural neighbors serve a basis for con-
structing Sibsonian and non-Sibsonian interpo-
lation functions. The concept of the natural neigh-
bors and the Sibsonian interpolation was intro-
duced by Sibson (1980) originally for curve fit-
ting and smoothing.

2.2 Laplace interpolation functions

Once the first-order Voronoi diagram and De-
launay triangulation were constructed, then La-
place interpolation functions corresponding to
individual nodes x; can be defined. Referring to
Fig. 2(a), we describe how the [-th Laplace in-
terpolation function ¢; is defined, where five cir-

oy

Voronei pelygon @,

second-order
Voronoi cell

(a)

cles are the Delaunay circumcircles generated by
node x; and its five neighbor nodes. We consider
a point xp within the region U ci7 (Apx) covered
by these circumcircles, then we can does also de-
fine a new first-order Voronoi polygon wp which
is composed of four sub-regions divided by the
previously defined Voronoi polygons w;. These
sub-regions are called the second-order Voronoi
cells wpr, and those are geometrically defined by

wrr={xER: d(x,xp) <d(x,x1) <d (x,%), 3)
VJ+P1I}

It is worthy noting that the shapes of Voronoi
polygon wp and corresponding second-order Voronoi
cells wpr vary with the location of point xp.

In the Sibsonian interpolation method, inter-
polation functions are defined in terms of the re-
lative area ratios of wp; to the total area of wp.
On the other hand, Laplace interpolation func-
tions in the non-Sibsonian case are expressed in
the slightly different manner. Referring to Fig. 2
(b), we first introduce the weighting functions @;
defined by

ar(xp) =%11((xx—i))’ I=1,2, M (4)

where s;=|7ver|, hi=d (xp, x1) /2. Here, the sub-
script I designates the edge of wp facing to the
node x; and M denotes the number of natural
neighbor nodes of the point xp. Then, the value
of Laplace interpolation function ¢; at point x»
is determined through

(b)

Fig. 2 Representation : (a) Second-order Voronoi cells; (b) Geometric definition of the polygon wp
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1 (ce) =a (x2) /3 an(xcr) )

Since Xp is an arbitrary point within the support
of ¢; we drop the subscript P hereafter. In this
manner, all Laplace interpolation functions for
a given node set ¥ can be defined.

Laplace interpolation function ¢, is unity at
its node x; because %; in Eq. (5) becomes infinity
while the others of %; remain finite. Referring to
Cho and Lee (2006a), it vanishes along the whole
boundary of its support, except for the Laplace
interpolation functions corresponding to the nodes
located on the boundary I" of the convex hull
0°(3%). Laplace interpolation function corre-
sponding to the node located on the boundary I
varies linearly from unity at its node to zero at
its neighbor nodes along supp($x)\I" but van-
ishes on the remaining part of its support bound-
ary. 2 R). Here, the support supp(px) of ¢
becomes the intersection of the convex hull £ R)
(i.e. the problem domain (£2)) and the union
Ucir (Ayx) of Delaunay circumcircles defined
by the node x; and its neighbor nodes (Farin,
1990) such that

supp(:(x)) =Ucir (Ayx(x)) NQHR) (6)

These behaviors of Laplace interpolation func-
tions along the boundaries of their supports can
be explained from the definition in Eq. (5). The
reader may refer to Cho and Lee (2006a) for more
detailed explanation.

3. 2-D Structural Dynamic Problem

3.1 Petrov-Galerkin natural element
approximation
When restricted to a 2-D linear elastic body
occupying the material domain QE%, its dy-
namic response u(x; t) is governed by (7,j=
X, ¥)

oi(u),,—c¢ ag;i+bi=10 a;;i-in 2x0,7] (7)

with initial and boundary conditions given by
u:(0) =2;(0) =0 in Q (8)
u,—=fti on PDX(O, T] (9)
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o‘,-,-nj=lt,- on I'yX (0, T] (10)

In which c, b; and p indicate the damping coeffi-
cient, the body force components and the struc-
ture density, respectively. Meanwhile, I and Iy
are the essential and natural boundary regions, T
the time period of observation, and n the out-
ward unit vector normal to the structure bound-
ary I'=IpUTIy. The virtual work principle con-
verts the initial-boundary-value problem (7) into
the variational formulation : Find u such that

/;{p%z%vﬁc a(;;‘ +0:;(w) €ij(U)} dQ

(1)
= [[bw.d@+ [ Fwds
for every admissible displacement v.
In the Petrov-Galerkin natural element ap-
proximation, trial and test functions are expanded

as follows :
wle: H=R@d @ -H® 12
vl ) =200 - T (x) (13)

for a given natural element grid composed of N
nodes. Here, ¢; are Laplace interpolation func-
tions defined in the previous section, while ¥
are the constant strain functions supported on
Delaunay triangles that are defined by

G0, y) ={Geye—xays) + (vi—ya) x (14
4 (x—x;) v}/24A, 1,7, k=1,2,3

Referring to Fig. 3, three points X1, X2 and X3 are

Fig. 3 Constant strain basis function supported on
Delaunay triangle
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three vertices of triangle (in the counter-clock-
wise direction) and A is the area of each triangle.
Introducing the (2N X1) nodal vector & and
substituting Eqgs. (12) and (13) into Eq.(11) leads
to the following semi-discrete matrix equations

N N N N
211 M’ﬁ+§: C,a+§: K’az; F?! (15)

The viscous damping is treated by the Rayleigh-
type damping model: C=aM +BK, and three
node-wise matrices are defined by

M= [ o¥T0dQ (16)

Cc'=[ c¥0dQ (17)

K'= [ (D¥)E(D®)dQ (18)
2

I__ T Tf
F —/%w bd9+fm%¢r ids (19)

with 27 =supp(¥:(x)), the (3X3) matrix E of
the two-dimensional linear elastic materials and
the (3X2) divergence-like operator D defining
Cauchy strains { €xx, &, 2Exy } 7. Other two matri-
ces ¥and @ are in the form of

SRR

_[(#r O)..(%r O (¢n O ]
@_KO ¢1) (0 ¢,) <o ¢~> 2D
On the other hand, a simple harmonic motion of

the solution vector & allows us to assume the
explicit time function given by

u(t) =ue™ (22)

Substituting Eq. (22) into Eq.(15) without the
load vector F; ends up with the following eigen
matrix system :

ﬁ: K —do* ﬁ: M’]ﬁ=0 (23)

3.2 Time-incremental numerical scheme

In order for the temporal discretization of the
semi-discrete equations of motion (15), we divide
the time period T of observation into a finite
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number of sub-intervals with the time step Af.
By replacing the node-wise matrices in Eq. (15)
with the global matrices, together with the im-
plicit time integration, we have

Mat+At+ Cﬁt+At+Cﬁt+At=Ft+At (24)

According to the Newmark’s constant-averaged-
acceleration method (Bathe, 1996), acceleration
and velocity are discretized as

l—‘t+At=%[at+At_l—‘t_Atat_ (l';?') (At)zﬁt] (25)

artt=a'+ (1—-8) At +oAtat™t  (26)

with y=8=0.5. Substituting Eqs. (25) and (26)
into Eq. (24), one can determines the time-state-
wise displacements using

utttt =K' (F** + Mith+ Cit (27)
where
= o, 2 28
K=K+ y(At)2M+7AtC (28)
.2 _, 2 1=y
u"'__—y(At)z u +myAt i -I——y it (29)
=20 gty 2077 ey lgytat (30)

U= At 4

We next summarize the time-incremental solu-
tion algorithm for the damped dynamic response
analysis by the Petrov-Galerkin natural element
method.

Step 1. Grid generation

- Generate a set ¥ of grid points xp.

- Construct Voronoi polygons w; and Delaunay
triangles Ayx (x).

- Construct Delaunay circumcles ¢;7 (Ayk) and
N Laplace interpolation functions.

Step 2. Initial calculation

- Form the stiffness matrix K and the mass
matrix C.

- Calculate initial acceleration &°: B*=M'F°.

- Store initial values @, i° and @’

- Form the effective stiffness matrix K from
Eq. (28).

Step 3. At each time stage

- Form the effective nodal solution vectors itk
and .

- Solve Eq. (27) for displacements i

t+AL
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- Update acceleration #i****
from Egs. (25) and (26).

- Form the effective stiffness matrix K and

and velocity ‘"¢

repeat Step 3.

4. Numerical Experiments

According to the theoretical results described
so far, a PC-based test program was coded in
Fortran in which the mass matrix is not lumped
and its upper triangular part is stored. Numerical
experiments are composed of the free vibration
analysis and the dynamic response analysis with-
out and with the viscous damping, and the nu-
merical results are compared with those obtained
by the Bubnov-Galerkin natural element method
(BG-NEM) and the constant strain finite element
method (CS-FEM).

4.1 Free vibration analysis

Fig. 4(a) shows an elastic tube with the inner
radius »=0.1 m and the thickness {=0.05 m, for
which the plane strain condition is assumed and

?

[l

\ )
Q/

(a)

(b)
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material properties are set by 0=7,800 kg/m?
E =210 GPa and y=0.3. From the problem sym-
metry, a quarter of the tube is taken for the free
vibration analysis with the uniform natural ele-
ment grid composed 328 nodes, as shown in
Fig. 4(b). But, the grid density is not fixed but
changed for the next convergence assessment.

We employ Lanczos and Jacobi methods to
compute lowest natural frequencies and modes
{®., #t:} up to the desired number. Four lowest
mode shapes are represented in Fig. 5, where the
second one is the extension mode. The extension
modes display the low error level even if the ap-
proximation space is very poor (Petyt, 1990), so
the convergence assessment focuses only on non-
extension modes.

Next, we performed the convergence assessment
of the PG-NEM in the free vibration analysis of
the model problem. Figs. 6(a) and 6(b) compare
the convergence rates of PG-NEM, BG-NEM
and CS-FEM to the number of nodes for two low-
est bending modes, where the relative frequency

error 7 is defined by

@ 3

Fig. 5 Lowest four mode shapes: (a) First; (b) Second; (c) Third; and (d) Fourth
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77=|C0ref_wh|/| Wrer| (31)
Here, the reference frequency wrr was obtained
by ANSYS commercial code using a fine mesh
generated with uniform bi-linear elements (5,783
nodes) . One can observe that PG-NEM shows hig-
her convergence rates and lower absolute errors
than other two methods for both bending modes.
In particular, the convergence of BG-NEM is
shown to be deteriorated at high grid density be-
cause the contribution of the numerical integra-
tion inaccuracy to the total numerical error be-
comes prominent.

4.2 Dynamic response analysis
In order to assess the numerical accuracy and

A‘\\\\M [ first bending mode |
“2 ~
",
¥
°\ 1943
3 4 . e
—
~ P @
= 4 - <) s
—_ ‘u\
\\ ‘O\q\
5 o o
e 2.494
~—
~@— PG-NEM o,
5 .
~0— BG-NEM T
—~f— CS-FEM
-7 T . 7 T T
16 18 20 22 24 26 28 30

In [(# of nodes)"?]
(a)
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stability of the Petrov-Galerkin natural element
method in the dynamic response analysis, we con-
sider a two-dimensional frame structure depicted
in Fig. 7(a). The frame is assumed in the plane
sress condition and geometry and material para-
meters are taken as follows: b=025m, £=3.0
MPa, v=025 and 0=3,000kg/m® A pressure
load p(f) with the ramp time dependence re-
presented in Fig. 7(b) is applied to the top sur-
face of the frame. The dynamic response is in-
vestigated into the undamped and the damped
cases, and the time integration up to 1.0 second
by the Newmark scheme given in Egs. (24) -(26)
is performed with the uniform time step A¢ of
0.005 sec.

A [ second bending modc'
2
-3 4
—
=~
= 4
=
5
B -
—&— PG-NEM Ry
—0— BG-NEM ™.
T4 e CSFEM o
T ¥ T T T T
16 18 20 22 24 28 28 30

In [(# of nodes)*? |

(b)

Fig. 6 Convergence rates of natural frequencies: (a) First bending mode; (b) Second bending mode

b —» 2b

b

le——»:——n-—- 5—‘—’«-—-0-‘—4«—:3‘—"

(a)

12

10

8

pressure p(t) (N/m?)

4 -]
2..
0 M T ¥ T M T ¥ T
0.0 0.2 0.4 0.6 0.8 1.0
time (sec)
(b)

Fig. 7 Frame structure subject to dynamic pressure at the top surface: (a) Geometry; (b) Time variation of

the pressure
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The problem symmetry allows us to model a
half of the frame for the numerical experiment, as
shown in Fig. 8, and two uniform grids (coarse
and fine grids) are used for the accuracy study.

P(Y
T A Y
A
<
E |
—

The numerical results of PG-NEM are compared
with those obtained by BG-NEM and CS-FEM
with the same grid densities set for PG-NEM. The
reference solutions are obtained by MSC/MARC

Fig. 8 Natural element model and two uniform grids
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Fig. 9 Time history of the vertical displacement at A (undamped) : (a) 39 nodes ; (b) 259 nodes
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Fig. 10 Time history of the shear stress at E (undamped) : (a) 39 nodes; (b) 259 nodes
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commercial code using a fine mesh generated with
uniform bi-linear elements (2,880 nodes). In the
current study, time histories of the displacement
and the shear stress are investigated to the grid
density and the approximation method.

Figures 9 and 10 represent the time histories of
the vertical displacement at A and the shear stress
Oxy at E of the undamped frame structure, re-
spectively. The vertical displacements obtained by
PG- and BG-NEM approach the reference solu-
tion as the grid density increases, whereas one by
CS-FEM shows the remarkable difference even
for fine mesh. This clearly shows that Laplace
interpolation functions provide higher interpola-
tion accuracy than finite element basis functions
for the given same total number of nodes. The re-

e JAISCAGARC (2,880 nodss)
- -  PG-NEM (39 nodes)
~~~~~~~ BG-NEM {39 nodes)
- CS-FEM {39 nodes)

N T e
Ed -
T e

TN
NS - o

vertical displacement at A ( um)

H M T v
0.0 02 04 0.6 o8 10
time (sec)

(a)

Fig. 11 Time history of the vertical displacement

0.5
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-~ PG-NEM (39 nodes)
© 0044 N e BG-NEM (39 nodes)
o e CS-FEM {39 nodes)
>
g 054
w
® ~1.04
&
173
g -154
»
&
8 -2.04
£
[
-2.54
T T £ H r T v
0.0 0.2 Q.4 0.6 08 1.0
time (sec)
(a)
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lative accuracy of PG- and BG-NEM with re-
spect to CS-FEM is also confirmed from Fig. 10,
where PG-NEM with 259 nodes shows an excel-
lent agreement with the reference solution. But,
one can observe that BG-NEM provides lower
accuracy than PG-NEM for both coarse and fine
grids, and which is because the numerical inte-
gration inaccuracy of BG-NEM gives rise to the
significant effect to the stress level. In general, the
inconsistency of the basis function support and
the background cell leads to the numerical accu-
racy deterioration and the non-uniformity in the
stress field (Cho and Lee, 2006a).

The dynamic responses of the damped frame
structure are represented in Figs. 11 and 12, for
which two damping parameters @ and § are set

0 e SC/MARC (2,880 nodes)
- = PG-NEM (259 nodes)
....... BG-NEM {259 nodes)
~—- CS-FEM ( 258 nodes)

i/ /\\_A,,/\ S

124

vertical displacement at A (lun)
&

16
T T T T Y v T r
0.0 0.2 0.4 0.6 0.8 1.0
time (sec)
(b)

at A (damped) : (a) 39 nodes; (b) 259 nodes

05
—— MSC/MARC (2,880 nodes)
— -~ ~ PG-NEM (259 nodes)
o « - BG-NEM {258 nodes)
& 0.0+ ~—— CS-FEM ( 259 nodes)
£
)
w -0.54
s
8
g -1.04
w
™
3
2 -1.54
»
-2.0 - T T T T N T v
0.6 0.2 0.4 06 0.8 10
time (sec)
(b)

Fig. 12 Time history of the shear stress at E (damped) : (2) 39 nodes; (b) 259 nodes
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by 0.005. Due to the damping effect, both the ver-
tical displacement at A and the shear stress at E
decay with the lapse of time. As in the undamped
case, both PG- and BG-NEM shows higher nu-
merical accuracy than CS-FEM, and PG-NEM
provides the best accuracy. And, BG-NEM suf-
fers from the numerical accuracy deterioration in
the time-history prediction of shear stress owing
to the numerical integration inaccuracy.

5. Conclusions

A Petrov-Galerkin natural element method
(PG-NEM) has been introduced for the accurate
free vibration and dynamic response analysis of
two-dimensional linear elastic bodies. The com-
bined use of Laplace interpolation functions (for
the trial basis function) defined in terms of Voronoi
polygons and the constant-strain test basis func-
tions supported on Delaunay triangles completely
eliminates the numerical integration error enco-
untered in most meshfree methods, while preserv-
ing the higher interpolation accuracy of the Bubnov-
Galerkin natural element method (BG-NEM).

These advantages of the proposed method have
been verified through the illustrative numerical
experiments. The benchmark free vibration test
confirmed that PG-NEM provides the highest
convergence rate with the lowest absolute error.
And, the undamped and damped dynamic re-
sponses obtained by PG-NEM shows an excellent
agreement with the reference solution, while CS-
FEM produces the significant error and BG-
NEM leads to the remarkable discrepancy owing
to the numerical integration inaccuracy.
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