• Title/Summary/Keyword: Penetration analysis

Search Result 1,387, Processing Time 0.033 seconds

Comparative Analysis of Understanding and Satisfaction of MRI Patients after Leaflet Training (리플릿 교육 후 MRI 환자의 이해도 및 만족도 비교분석)

  • Park, Chang-Hee;Han, Sang-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.2
    • /
    • pp.123-129
    • /
    • 2022
  • Recently, the penetration rate of Magnetic Resonance Imaging (MRI) is higher than the average among OECD member countries, and the number of MRI scans is increasing. However, MRI scans take longer than other medical devices, and patient movement must be minimized. Therefore, patient discomfort always follows. When the examination is performed in the discomfort of the patient, it is difficult to perform an accurate examination, and it is difficult to obtain an image of diagnostic value. So, in the past, the patient was asked to read the written guide for the risk and cooperation of MRI, but it was composed of technical terms and difficult-to-understand sentences, so it was difficult to understand. The purpose of this study is to supplement these problems and increase the understanding of MRI scans to help acquire images of diagnostic value. In addition, it is intended to evaluate the excellence of leaflet education by evaluating the understanding and satisfaction of patients. As shown in the results of this study, understanding and satisfaction scores were higher after education than before leaflet education, and it was found that there was a difference in understanding according to academic background. However, there was no difference in the number of MRI scans. That is, there was no difference in the number of inspections due to leaflet education. In the future, leaflet education will be widely used for MRI examination, and it is necessary to study the qualitative evaluation of images after leaflet education in the future.

A Study of The Vitalizing Effects of Smartphone Film Production on International Exchange : Focusing on Smartphone Film Workshop of Korean-Vietnamese (스마트폰 영화제작을 통한 국제 교류 활성화 연구 : 한국-베트남 영화제 스마트폰 영화 워크숍을 중심으로)

  • Sung, Si-Hup
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.2
    • /
    • pp.1-12
    • /
    • 2019
  • Based on the capabilities of smartphone cameras which have developed rapidly in recent decades, coupled with and the global market penetration rate, it will study the possibility of various international exchanges through smartphone filmmaking. This aims to achieve a civilian-oriented cultural exchange, instead of simply providing capital-oriented exchanges and film production education. The Smartphone Film Workshop was held as an auxiliary event of the Korea-Vietnam Film Festival, which ran from November 17 to 22, 2017. The three-day workshop, which took place within the festival period, drew attention for its international collaboration project between Korean film directors and Vietnamese film students. The researcher conducted practical-based research while participating as a mentor at this workshop. A step-by-step approach to the entire process of production and post-production was administered, including workshop team composition, scenario, and pre-production in Korea such as shooting equipment, schedule, completion of local works, and screening. Through an analysis of exchange cases at international workshops, we will use trial and error as ways to improve and consider the results of cultural exchanges and the effects of future expectations. Taking this empirical case study into account, we anticipate more active international exchanges through the smartphone workshops.

Durability Evaluation of Cement Concrete Using Ferrosilicon Industrial Byproduct (페로실리콘 산업부산물 활용 시멘트 콘크리트의 내구성능 평가)

  • Chang-Young Kim;Ki Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.89-96
    • /
    • 2023
  • In this paper, a ferrosilicon by-product was evaluated to confirm the feasibility of recycling it as supplementary cementitious material of ordinary Portland cement in concrete. Three different levels of replacement ratio (10 %, 20 % and 30 % of total binder) were applied to find which is the most beneficial to be used as a binder. Ferrosilicon concrete was initially assessed at setting time and compressive strength. Durability was evaluated by the resistance to chloride penetration test(RCPT) and alkali-silica reaction(ASR) with a comparison to silica fume concrete due to their similarity in chemical composition. The porosimetry and X-ray diffraction analysis along with energy dispersive X-ray spectroscopy give information on the microstructural characteristics of the ferrosilicon concrete. It was found that 10 % ferrosilicon concrete has higher strength while 20 %, 30 % have lower strength than OPC concrete. However, chemical resistance to chloride attack is higher when replacement is increased. Compared to silica fume, the durability of ferrosilicon might be less efficient however, it is obviously beneficial than OPC. High SiO2 content in ferrosilicon results in producing more C-S-H gel which could make denser pore structure. Most of the risk of alkali silica reaction to silicate binders through length change tests was less than 0.2 %, and both mortar using ferrosilicon and silica fume showed better resistance to alkali silica reaction as the substitution rate increased.Reuse of industrial waste rather than producing highly refined additives might reduce environmental load during manufacture and save costs.

Mechanism of Dilatory Dissipation during Piezocone Tests in Lightly Overconsolidated Cohesive Soil (약간 과압밀된 점성토에서 발생하는 피에조콘 지연소산 메커니즘)

  • Ha, Tae-Gyun;Jung, Jong-Hong;Kim, Hong-Jong;Park, Lae-Seon;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.73-84
    • /
    • 2007
  • For standard piezocones with shoulder filter elements immediately behind the cone tip, general dissipation curves show monotonically decreasing pore pressure from the initial value. However, dilatory dissipation behavior, showing a temporary increase in pore pressure followed by a decrease in the hydrostatic pressure, has been observed in lightly overconsolidated cohesive soils $(1. This unusual dissipation behavior was reported mostly in heavily overconsolidated ground and previous researches were limited to such cases. In this study, the mechanism of dilatory dissipation in lightly overconsolidated cohesive soils was investigated. The relativities of the ground properties evaluated from the CPTu data to the dilatory dissipation were analyzed. And, finite difference analyses on dissipation after cone penetration were performed. It was found that dilatory dissipation occurs in lightly overconsolidated soils since the higher excess pore pressure at the cone face propagates upward to the shoulder filter. Also, it was shown that the ratio of initial excess pore pressure at the cone face to that of the shoulder filter $({\Delta}u_{1i}/{\Delta}u_{2i})$, which is related to overconsolidation ratio (OCR) and hydrostatic pressure $(u_0)$, affects the dilatory dissipation.

Evaluation of Cementation Effect of Jeju Coastal Sediments (제주연안 퇴적층의 고결 평가)

  • Lee, Moon-Joo;Kim, Jae-Jeong;Shim, Jai-Beom;Lim, Chai-Geun;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.11
    • /
    • pp.105-115
    • /
    • 2009
  • The Jeju sand was sampled from the beach in Jeju Island and its basic properties were analyzed. The cementation effect of Jeju coastal sediments was evaluated from in-situ tests such as SPT, CPT, and the Suspension-PS test. It was shown from test results that the Jeju sand has high extreme void ratios due to the angularity of grains and the intra-particle voids of hollow particles, similar to typical calcareous sands. From cone penetration test in the calibration chamber, it was found that the cone resistance($q_c$)-relative density($D_R$)-vertical effective stress(${\sigma}_v'$) relation of Jeju sand almost matches that of high compressible quartz sand. However, the $q_C-D_R-{\sigma}_v'$ correlation suggested for uncemented Jeju sand overestimates the relative density of coastal sediments of Jeju Island due to the cementation effect. From the analysis of the relation of cone resistance, N value, and small strain shear modulus measured in-situ, it seems reasonable to assume that the coastal sediment of Jeju Island is a naturally cemented one.

Deep Learning based Estimation of Depth to Bearing Layer from In-situ Data (딥러닝 기반 국내 지반의 지지층 깊이 예측)

  • Jang, Young-Eun;Jung, Jaeho;Han, Jin-Tae;Yu, Yonggyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.3
    • /
    • pp.35-42
    • /
    • 2022
  • The N-value from the Standard Penetration Test (SPT), which is one of the representative in-situ test, is an important index that provides basic geological information and the depth of the bearing layer for the design of geotechnical structures. In the aspect of time and cost-effectiveness, there is a need to carry out a representative sampling test. However, the various variability and uncertainty are existing in the soil layer, so it is difficult to grasp the characteristics of the entire field from the limited test results. Thus the spatial interpolation techniques such as Kriging and IDW (inverse distance weighted) have been used for predicting unknown point from existing data. Recently, in order to increase the accuracy of interpolation results, studies that combine the geotechnics and deep learning method have been conducted. In this study, based on the SPT results of about 22,000 holes of ground survey, a comparative study was conducted to predict the depth of the bearing layer using deep learning methods and IDW. The average error among the prediction results of the bearing layer of each analysis model was 3.01 m for IDW, 3.22 m and 2.46 m for fully connected network and PointNet, respectively. The standard deviation was 3.99 for IDW, 3.95 and 3.54 for fully connected network and PointNet. As a result, the point net deep learing algorithm showed improved results compared to IDW and other deep learning method.

Enhancement of Penetration by Using Mechenical Micro Needle in Textile Strain Sensor (텍스타일 스트레인 센서에 마이크로 니들을 이용한 전도성입자 침투력 향상)

  • Hayeong Yun;Wonjin Kim;Jooyong Kim
    • Science of Emotion and Sensibility
    • /
    • v.25 no.4
    • /
    • pp.45-52
    • /
    • 2022
  • Recently, interest in and demand for sensors that recognize physical activity and their products are increasing. In particular, the development of wearable materials that are flexible, stretchable, and able to detect the user's biological signals is drawing attention. In this study, an experiment was conducted to improve the dip-coating efficiency of a single-walled carbon nanotube dispersion solution after fine holes were made in a hydrophobic material with a micro needle. In this study, dip-coating was performed with a material that was not penetrated, and comparative analysis was performed. The electrical conductivity of the sensor was measured when the sensor was stretched using a strain universal testing machine (Dacell Co. Ltd., Seoul, Korea) and a multimeter (Keysight Technologies, Santa Rosa, CA, USA) was used to measure resistance. It was found that the electrical conductivity of a sensor that was subjected to needling was at least 16 times better than that of a sensor that was not. In addition, the gauge factor was excellent, relative to the initial resistance of the sensor, so good performance as a sensor could be confirmed. Here, the dip-coating efficiency of hydrophobic materials, which have superior physical properties to hydrophilic materials but are not suitable due to their high surface tension, can be adopted to more effectively detect body movements and manufacture sensors with excellent durability and usability.

Revision of Repair Materials Performance Requirement for Concrete Structures (콘크리트 구조물 단면복구공사 보수재료 품질기준개선)

  • Lee, Il Keun;Kim, Ki Hwan;Kim, Hong Sam;Yun, Sung Hwan;Kim, Woo Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.9-20
    • /
    • 2023
  • For highway concrete structures, the deterioration of the structure is accelerated due to the increase in the use of deicing materials, and sectional repair work is being frequently carried out to restore performance. However, after the repair work, re-damage such as cracks, delamination, and poor bond performance is exhibited in the repaired sectional area. In this study, overseas repair material requirements were first analyzed, and present domestic requirements were improved repair material performance through field surveys of common concrete structures, laboratory experiments, and test construction on a disused concrete bridge. In addition, performancebased quality requirements were presented so that all materials that meet the required performance can be applied, and different test methods for each material were unified into concrete test methods for consistent test results analysis. The considered performance requirements were compression strength, bending strength, and bond strength for structural properties, and length change rate, crack resistance, thermal expansion coefficient, and elasticity coefficient were for dimensional behavior. For resistance to chloride penetration resistance and freeze-thaw resistance were presented as durability. The proposed requirements for concrete repair materials are expected to contribute to the improvement of the quality of concrete sectional repair work in Korea.

Self-Healing Property of Hardened Cement Paste (시멘트 페이스트 경화체의 self healing 특성)

  • Kim, Jae Young;Byun, Seung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.297-304
    • /
    • 2008
  • It is well known that cracks in concrete decrease permeability and durability of concrete because cracks enhance the penetration of water or corrosive chemicals like as chlorides, carbon dioxides, sulfates and some others. But some of cracks in hardened cements may be sealed in case of contacting water. This phenomenon is called "self healing" and it has a close relation to hydration products newly formed on surfaces of cracks. Many studies on self healing in concretes commonly showed that CSH gel has been observed on crack surfaces. And some studies have reported that calcium hydroxides and ettringite were observed as well as CSH gel on crack surfaces. This study was carried out to investigate hydration products formed by self healing process and also examine the influence of waterproof admixture for concretes on self healing of cement. As a result of XRD, DSC, SEM and EDX analysis of crack surfaces, it was found that self healing of cement was related to CSH gel, calcium hydroxides and ettringite. And waterproof admixture increased fibrous (needle-like) hydration products which were in network form. It is estimated that such fibrous products are effective for self healing process of cement system.

Influence of Water-Cement Ratios and Curing Conditions on the Diffusion Characteristics of Chloride Ion in Concrete (콘크리트의 염소이온 확산특성에 미치는 물-시멘트비 및 양생조건의 영향)

  • Bae, Su-Ho;Lee, Kwang-Myong;Kim, Jee-Sang;Jung, Sang-Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.753-759
    • /
    • 2006
  • To predict service life of concrete structures exposed to chloride attack, surface chloride concentration, diffusion coefficient of chloride ion, and chloride corrosion threshold value in concrete, are used as important factors. Of these, as the diffusion coefficient of chloride ion for concrete is strongly influenced by concrete quality and environmental conditions of structures and may significantly change the service life of structures, it is considered as the most important factor for service life prediction. The qualitative factors affecting the penetration and diffusion of chloride ion into concrete are water-cement (W/C) ratio, age, curing conditions, chloride ion concentration of given environment, wet and dry conditions, etc. In this paper the influence of W/C ratio and curing conditions on the diffusion characteristics of chloride ion in concrete was investigated through the chloride ion diffusion test. In the test, the voltages passing through the diffusion cell were measured by accelerated test method using potential difference, and then with the consideration of IR drop ratio the diffusion coefficient of chloride ion for concrete with different W/C ratios were estimated by Andrade's model. Furthermore, under different curing conditions formulas for the estimation of the diffusion coefficient of chloride ion have been proposed by the regression analysis considering the effect of W/C ratio and age.