DOI QR코드

DOI QR Code

Evaluation of Cementation Effect of Jeju Coastal Sediments

제주연안 퇴적층의 고결 평가

  • Lee, Moon-Joo (School of Civil, Environmental, and Architectural Engrg., Korea Univ.) ;
  • Kim, Jae-Jeong (School of Civil, Environmental, and Architectural Engrg., Korea Univ.) ;
  • Shim, Jai-Beom (Samsung C&T Corporation) ;
  • Lim, Chai-Geun (RGEO Engrg. & Construction) ;
  • Lee, Woo-Jin (School of Civil, Environmental, and Architectural Engrg., Korea Univ.)
  • 이문주 (고려대학교 건축.사회환경공학부) ;
  • 김재정 (고려대학교 건축.사회환경공학부) ;
  • 심재범 (삼성물산 토목사업본부 토목ENG팀) ;
  • 임채근 (알지오이엔씨) ;
  • 이우진 (고려대학교 건축.사회환경공학부)
  • Published : 2009.11.30

Abstract

The Jeju sand was sampled from the beach in Jeju Island and its basic properties were analyzed. The cementation effect of Jeju coastal sediments was evaluated from in-situ tests such as SPT, CPT, and the Suspension-PS test. It was shown from test results that the Jeju sand has high extreme void ratios due to the angularity of grains and the intra-particle voids of hollow particles, similar to typical calcareous sands. From cone penetration test in the calibration chamber, it was found that the cone resistance($q_c$)-relative density($D_R$)-vertical effective stress(${\sigma}_v'$) relation of Jeju sand almost matches that of high compressible quartz sand. However, the $q_C-D_R-{\sigma}_v'$ correlation suggested for uncemented Jeju sand overestimates the relative density of coastal sediments of Jeju Island due to the cementation effect. From the analysis of the relation of cone resistance, N value, and small strain shear modulus measured in-situ, it seems reasonable to assume that the coastal sediment of Jeju Island is a naturally cemented one.

본 연구에서는 제주특별자치도 강정항 인근 해역에서 채취한 해사의 기본특성을 분석하고, 실내 챔버시험으로부터 미고결 제주해사의 콘선단저항-상대밀도-연직구속압의 관계를 결정하였다. 또한 현장 표준관입시험, 콘관입시험, Suspension-PS 검층을 수행하여 제주인근 해역 퇴적층의 고결가능성을 평가하였다. 시험결과, 제주해사는 입자의 각진 정도가 크고 입자표면과 내부에 공극이 발달하여 최대, 최소간극비가 큰 탄산염 모래의 특성을 가지고 있었으며, 큰 압축성을 가진 규산염 모래와 유사한 콘선단저항 분포를 나타내었다. 그러나 미고결 제주해사의 $q_c-D_R-{\sigma}_v'$ 관계는 제주인근 해역 퇴적층의 상대밀도를 과대평가하였다. 관입시험(CPT, SPT) 결과와 Suspension-PS 시험에 의한 미소변형전단탄성계수를 비교한 결과, 제주인근 해역의 퇴적층은 고결 가능성이 매우 높은 것으로 확인되었다.

Keywords

References

  1. 남정만, 조성환, 김태형 (2007), "제주 해안지역 모래의 압축특성", 한국지반공학회논문집, 제 23권, 6호, pp.103-114
  2. 이문주, 최성근, 추현욱, 이우진 (2008) "고결모래의 콘선단저항과 변형계수의 관계", 한국지반공학회논문집, 제 24권 12호, pp.53-63
  3. 이문주, 최성근, 홍성진, 이우진 (2009), "CPT와 DMT에 의한 사질토 고결영향 평가", 한국지반공학회논문집, 제 25권, 2호, pp.67-77
  4. Airey, D. W., and Fahey, M. (1991), "Cyclic response of calcareous soil from the North-West Shelf of Australia", Geotechnique, Vol.41, No.1, pp.101-121 https://doi.org/10.1680/geot.1991.41.1.101
  5. Airey, D. W., Randolph, M. F., and Hyden, A. M. (1988), "The strength and stiffness of two calcareous sands", Proceedings of International Conference on Calcareous Sediments, Perth, Australia, Vol.1 pp.43-50
  6. Been, K., Crooks, J. H. A., Becker, D. E., and Jefferies, M. G. (1986), "The cone penetration test in sands: Part I, state parameter interpretation", Geotechnique, Vol.36, No.2, pp.239-249 https://doi.org/10.1680/geot.1986.36.2.239
  7. Coop, M. R. (1990), "The mechanics of uncemented carbonate sands", Geotechnique, Vol.40, No.4, pp.607-626 https://doi.org/10.1680/geot.1990.40.4.607
  8. Choi, S. K. (2008), Estimation of stress history of sands using CPT and DMT, Ph.D. thesis, Korea University
  9. Cruz, N., and Fonseca, A. V. (2006), "Portuguese experience in residual soil characterization by DMT tests", Proceeding of 2nd International Conference on the Flat Dilatometer, Washington, D.C., pp.359-364
  10. Cubrinovski, M., and Ishihara, K. (2002), "Maximum and minimum void ratio characteristics of sands", Soils and Foundations, Vol.42, No.6, pp.65-78 https://doi.org/10.3208/sandf.42.6_65
  11. Fonseca, A. V., Silva, S. R., and Cruz, N. (2008), "Geotechnical characterization by in situ and lab tests to the back-analysis of a supported excavation in Metro do Porto", Geotechnical and Geological Engineering, Published online
  12. Golightly, C. R., and Hyde, A. F. L. (1988), "Some fundamental properties of carbonate soils", Proceedings of International Conference on Calcareous Sediments, Perth, Australia, Vol.1 pp.69-78
  13. Hyodo, M., Aramaki, N., and ltoh, M. (1996), "Cyclic strength and deformation of crushable carbonate sand", Soil Dynamics and Earthquake Engineering, Vol.15, pp.331-336 https://doi.org/10.1016/0267-7261(96)00003-6
  14. Imai, T., and Tonouchi, K. (1982), "Correlation of N-value with S-wave velocity and shear modulus", Proceedings of the 2nd European Symposium on Penetration Testing, Amsterdam, pp.57-72
  15. Ismail, M. A. (2000), Strength and deformation behaviour of calcitecemented calcareous soil. Ph.D. Thesis, the University of Western Australia
  16. Jamiolkowski, M., Ladd, C. c., Germaine, J. T., and Lancellotta, R. (1985), "New Developments in Field and Laboratory Testing of Soils", Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, pp. 57-153
  17. Jamiolkowski, M., Lo Presti, D.C.F. and Manassero, M. (2003), "Evaluation of relative density and shear strength of sands from CPT and DMT", Soil Behavior and Soft Ground Construction, ASCE GSP 119, pp.201-238
  18. Jarniolkowski, M., Ghionna, V. N., Lancellotta, R., and Pasqualini, E. (1988), "New correlation of penetration tests for design practice", Proceedings of the 1st International Symposium on Penetration Testing, Orlando, Florida, pp 263-296
  19. Kaggwa, W. S. (1988), Cyclic behavior of carbonate sediments, Ph.D. thesis, The University of Sydney
  20. Kim, T. J. (2005), Dissipation of porewater pressure due to piezocone penetration in OC clay, Ph.D. dissertation, Korea University
  21. Lo Presti, D. C. F., Pedroni, S., and Crippa, V. (1992), "Maximum dry density of cohesionless soils by pluviation and by ASTM D- 4253-83: A comparative study", Geotechnical Testing Journal, ASTM, Vol.15, No.2, pp.180-189 https://doi.org/10.1520/GTJ10239J
  22. Marchetti, S., Monaco, P., Totani, G., and Calabrese, M. (2001), "The flat dilatometer test (DMT) in soil investigations", International Conference on In Situ Measurement of Soil Properties, Bali, Indonesia
  23. Miura, S., and Toki, S. (1982), "A Sample Preparation Method and Its Effect on Static and Cyclic Deformation-Strength Properties of Sand", Soils and Foundations, Vol.22, No.1, pp.61-77 https://doi.org/10.3208/sandf1972.22.61
  24. Rix, G. J., and Stokoe, K. H. (1991), "Correlation of initial tangent modulus and cone resistance", Proceedings of the 1st International Symposium on Calibration Chamber Testing, Potsdam, pp.351-362
  25. Puppala, A. J., Acar, Y. B., and Tumay, M. T. (1995), "Cone penetration in very weakely cemented sand", Journal of Geotechnical Engineering, ASCE, Vol.121, No.8, pp.589-600 https://doi.org/10.1061/(ASCE)0733-9410(1995)121:8(589)
  26. Puppala, A. J., Acar, Y. B., and Tumay, M. T. (1996), "Low strain dynamic shear modulus of cemented sand from cone penetration test results", Transportation research record 1548, Transportation research board, pp.60-66
  27. Schnaid, F., Lehane, B. M., and Fahey, M. (2004), "In situ test characterization of unusual geornatcrials", Prodeedings of 2nd international Conferenceon Site Characterization, Porto, Vol.1 , pp.49-74
  28. Sharma, S. S., and Fahey, M. (2004), "Deformation characteristics of two cemented calcareous soils", Canadian Geotechnical Journal, Vol.41, pp.1139-1151 https://doi.org/10.1139/t04-066