DOI QR코드

DOI QR Code

Enhancement of Penetration by Using Mechenical Micro Needle in Textile Strain Sensor

텍스타일 스트레인 센서에 마이크로 니들을 이용한 전도성입자 침투력 향상

  • 윤하영 (숭실대학교 스마트웨어러블공학과 ) ;
  • 김원진 (숭실대학교 유기신소재파이버공학과 ) ;
  • 김주용 (숭실대학교 유기신소재파이버공학과 )
  • Received : 2022.07.14
  • Accepted : 2022.08.09
  • Published : 2022.12.31

Abstract

Recently, interest in and demand for sensors that recognize physical activity and their products are increasing. In particular, the development of wearable materials that are flexible, stretchable, and able to detect the user's biological signals is drawing attention. In this study, an experiment was conducted to improve the dip-coating efficiency of a single-walled carbon nanotube dispersion solution after fine holes were made in a hydrophobic material with a micro needle. In this study, dip-coating was performed with a material that was not penetrated, and comparative analysis was performed. The electrical conductivity of the sensor was measured when the sensor was stretched using a strain universal testing machine (Dacell Co. Ltd., Seoul, Korea) and a multimeter (Keysight Technologies, Santa Rosa, CA, USA) was used to measure resistance. It was found that the electrical conductivity of a sensor that was subjected to needling was at least 16 times better than that of a sensor that was not. In addition, the gauge factor was excellent, relative to the initial resistance of the sensor, so good performance as a sensor could be confirmed. Here, the dip-coating efficiency of hydrophobic materials, which have superior physical properties to hydrophilic materials but are not suitable due to their high surface tension, can be adopted to more effectively detect body movements and manufacture sensors with excellent durability and usability.

최근 신체활동에 대해 인식하는 센서와 그 제품군에 대한 관심 및 수요가 증가하고 있다. 특히 유연하고 연신이 가능하며 사용자의 생체신호를 감지할 수 있는 웨어러블 소재에 대한 개발이 주목받고 있다. 본 연구에서는 소수성 소재에 Micro Needle을 통해 미세 구멍을 형성한 후 SWCNT 분산용액에 대한 함침 효율을 향상시키는 실험을 수행하였다. 본 연구에서는 구멍을 뚫지 않은 소재를 대조(control) 군으로 함침을 진행, 비교 분석하였다. 센서의 전기전도도를 평가하기 위해 Strain UTM (Universal Testing Machine, UTM, Dacell)과 저항을 측정하는 멀티미터(Keysight)를 이용해 센서를 인장했을 때의 센서의 전기전도도를 측정하였다. 또한 센서의 내구성을 평가하기 위해 시료별로 500회 인장을 진행한 후에 센서의 전기전도도를 평가하였다. 그 결과 Needling을 한 센서의 전기전도성이 Needling을 하지 않은 센서에 비해 최소 16배 이상 뛰어남을 알 수 있었다. 또한 센서의 초기 저항에 비해 게이지 팩터도 우수해 센서로서 좋은 성능을 확인할 수 있었다. 이를 통해 친수성 소재에 비해 물성이 뛰어나지만, 높은 표면장력 때문에 함침 효율이 좋지 않았던 소수성 소재의 함침 효율을 높여 신체의 움직임을 더 효과적으로 감지하고 내구성과 활용 가능성이 뛰어난 센서를 제작했다.

Keywords

Acknowledgement

이 논문은 2022년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(P0012770, 2022년 산업혁신인재성장지원사업).

References

  1. Hou, A., Cohen, B., Haimovic, A., & Elbuluk, N. (2017). Microneedling: A comprehensive review. Dermatologic Surgery, 43(3). https://journals.lww.com/dermatolo gicsurgery/Fulltext/2017/03000/Microneedling__A_Comprehensive_Review.1.aspx
  2. Joshi, U. A., Sharma, S. C., & Harsha, S. P. (2012). Effect of carbon nanotube orientation on the mechanical properties of nanocomposites. Composites Part B: Engineering, 43(4), 2063-2071. https://doi.org/10.1016/j.compositesb.2012.01.063
  3. Kim, I., & Cho, G. (2018). Polyurethane nanofiber strain sensors viain situpolymerization of polypyrrole and application to monitoring joint flexion. Smart Materials and Structures, 27(7). DOI: 10.1088/1361-665X/aac0b2
  4. Larson, C., Peele, B., Li, S., Robinson, S., Totaro, M., Beccai, L., Mazzolai, B., & Shepherd, R. (2016). Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science, 351(6277), 1071-1074. DOI: 10.1126/science.aac5082
  5. Makowski, T., Kowalczyk, D., Fortuniak, W., Jeziorska, D., Brzezinski, S., & Tracz, A. (2014). Superhydrophobic properties of cotton woven fabrics with conducting 3D networks of multiwall carbon nanotubes, MWCNTs. Cellulose, 21(6), 4659-4670. DOI: 10.1007/s10570-014-0422-0
  6. Pantelopoulos, A., & Bourbakis, N. (2010). A survey on wearable sensor-based systems for health monitoring and prognosis. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 40, 1-12. DOI: 10.1109/TSMCC.2009.2032660
  7. Seyedin, S., Zhang, P., Naebe, M., Qin, S., Chen, J., Wang, X., & Razal, J. M. (2019). Textile strain sensors: A review of the fabrication technologies, performance evaluation and applications. Materials Horizons, 6(2), 219-249. DOI: 10.1039/c8mh01062e
  8. Shahidi, S., & Moazzenchi, B. (2018). Carbon nanotube and its applications in textile industry - A review. The Journal of The Textile Institute, 109(12), 1653-1666. DOI: 10.1080/00405000.2018.1437114
  9. Song, Y. I., Lee, J. W., Kim, T. Y., Jung, H. J., Jung, Y. C., Suh, S. J., & Yang, C.-M. (2013). Performance-determining factors in flexible transparent conducting single-wall carbon nanotube film. Carbon Letters, 14(4), 255-258. DOI: 10.5714/cl.2013.14.4.255
  10. Spotnitz, M. E., Ryan, D., & Stone, H. A. (2004). Dip coating for the alignment of carbon nanotubes on curved surfaces. Journal of Materials Chemistry, 14(8). DOI: 10.1039/b308548a
  11. Vu, C. C., & Kim, J. (2020). Highly elastic capacitive pressure sensor based on smart textiles for full-range human motion monitoring. Sensors and Actuators A: Physical, 314. DOI: 10.1016/j.sna.2020.112029
  12. Vu, C. C., & Kim, J. (2020). Highly sensitive e-textile strain sensors enhanced by geometrical treatment for human monitoring. Sensors, 20(8). DOI: 10.3390/s20082383
  13. Wu, R., Ma, L., Patil, A., Hou, C., Zhu, S., Fan, X., Lin, H., Yu, W., Guo, W., & Liu, X. Y. (2019). All-textile electronic skin enabled by highly elastic spacer fabric and conductive fibers. ACS Appl Mater Interfaces, 11(36), 33336-33346. DOI: 10.1021/acsami.9b10928
  14. Yun, H.-Y., Kim, S.-U., & Kim, J.-Y. (2021). Carbon-nanotube-based spacer fabric pressure sensors for biological signal monitoring and the evaluation of sensing capabilities. Korean Society for Emotion and Sensibility, 24(2), 65-74. DOI: 10.14695/kjsos.2021.24.2.65