1 |
Hou, A., Cohen, B., Haimovic, A., & Elbuluk, N. (2017). Microneedling: A comprehensive review. Dermatologic Surgery, 43(3). https://journals.lww.com/dermatolo gicsurgery/Fulltext/2017/03000/Microneedling__A_Comprehensive_Review.1.aspx
|
2 |
Joshi, U. A., Sharma, S. C., & Harsha, S. P. (2012). Effect of carbon nanotube orientation on the mechanical properties of nanocomposites. Composites Part B: Engineering, 43(4), 2063-2071.
DOI
|
3 |
Kim, I., & Cho, G. (2018). Polyurethane nanofiber strain sensors viain situpolymerization of polypyrrole and application to monitoring joint flexion. Smart Materials and Structures, 27(7). DOI: 10.1088/1361-665X/aac0b2
DOI
|
4 |
Larson, C., Peele, B., Li, S., Robinson, S., Totaro, M., Beccai, L., Mazzolai, B., & Shepherd, R. (2016). Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science, 351(6277), 1071-1074. DOI: 10.1126/science.aac5082
DOI
|
5 |
Makowski, T., Kowalczyk, D., Fortuniak, W., Jeziorska, D., Brzezinski, S., & Tracz, A. (2014). Superhydrophobic properties of cotton woven fabrics with conducting 3D networks of multiwall carbon nanotubes, MWCNTs. Cellulose, 21(6), 4659-4670. DOI: 10.1007/s10570-014-0422-0
DOI
|
6 |
Pantelopoulos, A., & Bourbakis, N. (2010). A survey on wearable sensor-based systems for health monitoring and prognosis. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 40, 1-12. DOI: 10.1109/TSMCC.2009.2032660
DOI
|
7 |
Seyedin, S., Zhang, P., Naebe, M., Qin, S., Chen, J., Wang, X., & Razal, J. M. (2019). Textile strain sensors: A review of the fabrication technologies, performance evaluation and applications. Materials Horizons, 6(2), 219-249. DOI: 10.1039/c8mh01062e
DOI
|
8 |
Shahidi, S., & Moazzenchi, B. (2018). Carbon nanotube and its applications in textile industry - A review. The Journal of The Textile Institute, 109(12), 1653-1666. DOI: 10.1080/00405000.2018.1437114
DOI
|
9 |
Song, Y. I., Lee, J. W., Kim, T. Y., Jung, H. J., Jung, Y. C., Suh, S. J., & Yang, C.-M. (2013). Performance-determining factors in flexible transparent conducting single-wall carbon nanotube film. Carbon Letters, 14(4), 255-258. DOI: 10.5714/cl.2013.14.4.255
DOI
|
10 |
Spotnitz, M. E., Ryan, D., & Stone, H. A. (2004). Dip coating for the alignment of carbon nanotubes on curved surfaces. Journal of Materials Chemistry, 14(8). DOI: 10.1039/b308548a
DOI
|
11 |
Yun, H.-Y., Kim, S.-U., & Kim, J.-Y. (2021). Carbon-nanotube-based spacer fabric pressure sensors for biological signal monitoring and the evaluation of sensing capabilities. Korean Society for Emotion and Sensibility, 24(2), 65-74. DOI: 10.14695/kjsos.2021.24.2.65
DOI
|
12 |
Vu, C. C., & Kim, J. (2020). Highly elastic capacitive pressure sensor based on smart textiles for full-range human motion monitoring. Sensors and Actuators A: Physical, 314. DOI: 10.1016/j.sna.2020.112029
DOI
|
13 |
Vu, C. C., & Kim, J. (2020). Highly sensitive e-textile strain sensors enhanced by geometrical treatment for human monitoring. Sensors, 20(8). DOI: 10.3390/s20082383
DOI
|
14 |
Wu, R., Ma, L., Patil, A., Hou, C., Zhu, S., Fan, X., Lin, H., Yu, W., Guo, W., & Liu, X. Y. (2019). All-textile electronic skin enabled by highly elastic spacer fabric and conductive fibers. ACS Appl Mater Interfaces, 11(36), 33336-33346. DOI: 10.1021/acsami.9b10928
DOI
|