DOI QR코드

DOI QR Code

페로실리콘 산업부산물 활용 시멘트 콘크리트의 내구성능 평가

Durability Evaluation of Cement Concrete Using Ferrosilicon Industrial Byproduct

  • 김창영 (한양대학교 건설환경시스템공학과) ;
  • 안기용 (한양대학교 건설환경공학과)
  • Chang-Young Kim (Department of Civil & Environmental System Engineering, Hanyang University) ;
  • Ki Yong Ann (Department of Civil & Environment Engineering, Hanyang University)
  • 투고 : 2023.02.17
  • 심사 : 2023.02.24
  • 발행 : 2023.03.30

초록

산업부산물인 페로실리콘을 사용한 시멘트 콘크리트의 내구성능을 평가하기 위하여 페로실리콘의 치환율을 3단계로 변화시켜 제조한 시멘트 경화체의 염화물침투저항성, 알칼리실리카 반응성에 대하여 평가하였다. 페로실리콘을 사용한 시멘트 콘크리트의 내구성능은 화학조성이 유사한 실리카흄과 비교하여 평가하였으며, 에너지 분산형 X선 분광법, 공극측정 및 X선 회절분석 등 기기분석을 통하여 페로실리콘 콘크리트의 미세 구조적 특성을 고찰하였다. 그 결과, 페로실리콘을 10 % 치환한 경우 OPC콘크리트보다 높은 강도발현 특성을 보인 반면 치환율이 20 %, 30 % 증가할수록 압축강도는 낮게 발현되었다. 그러나 염화물 침투저항성에 대한 결과는 치환율이 증가할수록 우수한 결과를 나타내었으며, 실리카흄을 사용한 경우에 비하여 페로실리콘을 사용한 콘크리트의 내구성은 약간 떨어지지만 OPC에 비해서는 우수한 결과를 나타내었다. 이는 페로실리콘의 실리카(SiO2) 함량이 높아 더 많은 C-S-H 겔을 생성하여 더 밀실한 공극 구조를 만들었기 때문이라 생각된다. 길이변화시험을 통한 규산염 바인더에 대한 알칼리실리카반응의 위험성은 대부분 0.2 % 미만으로 나타났으며, 페로실리콘 및 실리카흄을 사용한 모르타르 모두 치환율이 증가할수록 알칼리실리카 반응에 대한 저항성은 우수한 것으로 나타났다. 따라서 고가의 실리카흄을 사용하는 대신 산업 폐기물을 재사용하면 제조 중 환경 부하를 줄이고 비용을 절약할 수 있을 것으로 판단된다.

In this paper, a ferrosilicon by-product was evaluated to confirm the feasibility of recycling it as supplementary cementitious material of ordinary Portland cement in concrete. Three different levels of replacement ratio (10 %, 20 % and 30 % of total binder) were applied to find which is the most beneficial to be used as a binder. Ferrosilicon concrete was initially assessed at setting time and compressive strength. Durability was evaluated by the resistance to chloride penetration test(RCPT) and alkali-silica reaction(ASR) with a comparison to silica fume concrete due to their similarity in chemical composition. The porosimetry and X-ray diffraction analysis along with energy dispersive X-ray spectroscopy give information on the microstructural characteristics of the ferrosilicon concrete. It was found that 10 % ferrosilicon concrete has higher strength while 20 %, 30 % have lower strength than OPC concrete. However, chemical resistance to chloride attack is higher when replacement is increased. Compared to silica fume, the durability of ferrosilicon might be less efficient however, it is obviously beneficial than OPC. High SiO2 content in ferrosilicon results in producing more C-S-H gel which could make denser pore structure. Most of the risk of alkali silica reaction to silicate binders through length change tests was less than 0.2 %, and both mortar using ferrosilicon and silica fume showed better resistance to alkali silica reaction as the substitution rate increased.Reuse of industrial waste rather than producing highly refined additives might reduce environmental load during manufacture and save costs.

키워드

과제정보

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2020R1A2C3012248).

참고문헌

  1. ASTM C 1202 (2012). Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration, US.
  2. ASTM C 1260 (2014). Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method), US.
  3. ASTM C 490/C490M (2017). Standard Practice for Use of Apparatus for the Determination of Length Change of Hardened Cement Paste, Mortar, and Concrete, US.
  4. Bajja, Z., Dridi, W., Darquennes, A., Bennacer, R., Le Bescop, P., Rahim, M. (2017). Influence of slurried silica fume on microstructure and tritiated water diffusivity of cement pastes, Construction and Building Materials, 132, 85-93. https://doi.org/10.1016/j.conbuildmat.2016.11.097
  5. Boddy, A.M., Hooton, R.D., Thomas, M.D.A. (2000). The effect of product form of silica fume on its ability to control alkali-silica reaction, Cement and Concrete Research, 30(7), 1139-1150. https://doi.org/10.1016/S0008-8846(00)00297-0
  6. Boddy, A.M., Hooton, R.D., Thomas, M.D.A. (2003). The effect of the silica content of silica fume on its ability to control alkali-silica reaction, Cement and Concrete Research, 33(8), 1263-1268. https://doi.org/10.1016/S0008-8846(03)00058-9
  7. Choi, H.K., Lee, J.M., Hong, J.H., Seo, K.H., Park, M.Y. (2017). Fundamental properties of concrete according to the fineness of ferronickel slag, Proceedings of Korea Concrete Institute, 29(1), 491-492 [in Korean].
  8. Kim, H., Lee, C.H., Ann, K.Y. (2019). Feasibility of ferronickel slag powder for cementitious binder in concrete mix, Construction and Building Materials, 207, 693-705. https://doi.org/10.1016/j.conbuildmat.2019.02.166
  9. Kim, S.H., Hwang, J.P. (2013). The CO2 emission in the process of cement manufacture depending on CaO content, Journal of the Korea Concrete Institute, 25(4), 365-370 [in Korean]. https://doi.org/10.4334/JKCI.2013.25.4.365
  10. KS F 2405 (2022). Test Method for Compressive Strength of Concrete, Korea Standard Association [in Korean].
  11. KS F 2436 (2017). Standard Test Method for Setting Times of Concrete Mixture by Penetration Resistance, Korea Standard Association [in Korean].
  12. Maas, A.J., Ideker, J.H., Juenger, M.C. (2007). Alkali silica reactivity of agglomerated silica fume, Cement and Concrete Research, 37(2), 166-174. https://doi.org/10.1016/j.cemconres.2006.10.011
  13. Mehta, P.K., Monteiro, P.J.M. (2006). Concrete Micro- Structure, Properties, and Materials, 3rd Edition, McGraw-Hill, New York.
  14. Mindess, S., Young, J.F., Darwin, D. (1981). Concrete, Prentice-Hall, Englewood Cliffs, NJ 481.
  15. Page, C.L., Vennesland, O. (1983). Pore solution composition and chloride binding capacity of silica-fume cement pastes, Materiaux et Construction, 16(1), 19-25. https://doi.org/10.1007/BF02474863
  16. Rahman, M.A., Sarker, P.K., Shaikh, F.U.A., Saha, A.K. (2017). Soundness and compressive strength of Portland cement blended with ground granulated ferronickel slag, Construction and Building Materials, 140, 194-202. https://doi.org/10.1016/j.conbuildmat.2017.02.023
  17. Rossen, J.E., Lothenbach, B., Scrivener, K.L. (2015). Composition of C-S-H in pastes with increasing levels of silica fume addition, Cement and Concrete Research, 75, 14-22. https://doi.org/10.1016/j.cemconres.2015.04.016
  18. Saha, A.K., Khan, M.N.N., Sarker, P.K. (2018). Value added utilization of by-product electric furnace ferronickel slag as construction materials: a review, Resources, Conservation and Recycling, 134, 10-24. https://doi.org/10.1016/j.resconrec.2018.02.034
  19. Siddique, R., Chahal, N. (2011). Use of silicon and ferrosilicon industry by-products (silica fume) in cement paste and mortar, Resources, Conservation and Recycling, 55(8), 739-744. https://doi.org/10.1016/j.resconrec.2011.03.004
  20. Soliman, N.A., Tagnit-Hamou, A. (2016). Development of ultra-high-performance concrete using glass powder-Towards ecofriendly concrete, Construction and Building Materials, 125, 600-612. https://doi.org/10.1016/j.conbuildmat.2016.08.073
  21. Wang, X., Huang, J., Ma, B., Dai, S., Jiang, Q., Tan, H. (2019). Effect of mixing sequence of calcium ion and polycarboxylate superplasticizer on dispersion of a low grade silica fume in cement-based materials, Construction and Building Materials, 195, 537-546. https://doi.org/10.1016/j.conbuildmat.2018.11.032