• Title/Summary/Keyword: Pediococcus acidilactici

Search Result 63, Processing Time 0.029 seconds

Plasmid Linkage of Bacteriocin Production and Sucrose Fermentation Phenotypes in Pediococcus acidilactici M

  • Kim, Wang-June;Ha, Duk-Mo
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.3
    • /
    • pp.169-175
    • /
    • 1991
  • Pediococcus acidilactici strain M produced a bacteriocin which was proteinaceous, heat stable, and exhibited antimicrobial activity against lactic acid bacteria, variety of food spoilage and pathogenic bacteria. The antimicrobial activity was not caused by $H_2$$O_2$ and organic acid, and was remained between pHs of 4.0 to 9. Molecular weight of crude bacteriocin was approximately 2, 500. Phenotypic assignment after plasmid cruing experiment demonstrated that a 53.7 kilobase (kb) plasmid, designated as pSUC53, was responsible for the sucrose fermentation phenotype ($Suc^+$) and a 11.1 kb plasmid, designated as pBAC11, was associated with bacteriocin production phenotype ($Bac^+$). Neither of the two plasmids were linked to antibiotic resistance.

  • PDF

Probiotic Potential of Pediococcus acidilactici and Enterococcus faecium Isolated from Indigenous Yogurt and Raw Goat Milk

  • Sarkar, Shovon Lal;Hossain, Md. Iqbal;Monika, Sharmin Akter;Sanyal, Santonu Kumar;Roy, Pravas Chandra;Hossain, Md. Anwar;Jahid, Iqbal Kabir
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.276-286
    • /
    • 2020
  • Probiotics are live microorganisms that, when administered in adequate amounts, confer health benefits to the host. This study was conducted for the isolation of potential lactic acid bacteria (LAB) with probiotic properties from goat milk and yogurt. Several tests were conducted in vitro using the standard procedures for evaluating the inhibitory spectra of LAB against pathogenic bacteria; tolerance to NaCl, bile salt, and phenol; hemolytic, milk coagulation, and bile salt hydrolase activities; gastrointestinal transit tolerance; adhesion properties; and antibiotic susceptibility. Among 40 LAB strains screened according to culture characteristics, five isolates exhibited antagonistic properties. Three were identified as Pediococcus acidilactici, and two were identified as Enterococcus faecium, exploiting 16S rRNA gene sequencing. All the isolates succeeded in the gastrointestinal transit tolerance assay and successively colonized mucosal epithelial cells. Based on the results of these in vitro assays, both P. acidilactici and E. faecium can be considered as potential probiotic candidates.

Complete genome sequence of Pediococcus acidilactici CACC 537 isolated from canine

  • Jung-Ae Kim;Hyun-Jun Jang;Dae-Hyuk Kim;Youn Kyoung Son;Yangseon Kim
    • Journal of Animal Science and Technology
    • /
    • v.65 no.5
    • /
    • pp.1105-1109
    • /
    • 2023
  • Pedi coccus acidilactici CACC 537 was isolated from canine feces and reported to have probiotic properties. We aimed to characterize the potential probiotic properties of this strain by functional genomic analysis. Complete genome sequencing of P. acidilactici CACC 537 was performed using a PacBio RSII and Illumina platform, and contained one circular chromosome (2.0 Mb) with a 42% G + C content. The sequences were annotation revealed 1,897 protein-coding sequences, 15 rRNAs, and 56 tRNAs. It was determined that P. acidilactici CACC 537 genome carries genes known to be involved in the immune system, defense mechanisms, restriction-modification (R-M), and the CRISPR system. CACC 537 was shown to be beneficial in preventing pathogen infection during the fermentation process, help host immunity, and maintain intestinal health. These results provide for a comprehensive understanding of P. acidilactici and the development of industrial probiotic feed additives that can help improve host immunity and intestinal health.

Isolation of Halototlerant Lactic Acid Bacteria for Fermentation of Food Wastes (남은 음식물 발효를 위한 내염성 유산균의 분리)

  • 양시용;박홍양;김창원;박근규
    • Journal of Animal Environmental Science
    • /
    • v.7 no.2
    • /
    • pp.137-140
    • /
    • 2001
  • The objective of this study was isolation of halotolerant lactic acid bacteria for fermentation of food wastes. 5 strains of lactic acid bacteria were isolated from fermented foods. Among isolated strains, the strain 5-2 was selected according to the growth characteristics in food wastes containing medium. The selected strain 5-2 was identified as Pediococcus acidilactici based on its biochemical characteristics.

  • PDF

Fermentation and Quality Evaluation of makgeolli, Korean Rice Wine Supplemented with Alcohol-tolerant Pediococcus acidilactici K3 (알코올 내성 젖산균 P. acidilactici K3와 혼합 발효한 막걸리의 품질 연구)

  • Jang, Danbie;Lee, Hyunjoo;Pyo, Sangeun;Roh, Seong Woon;Rhee, Jin-Kyu;Lee, Han-Seung
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.4
    • /
    • pp.367-376
    • /
    • 2014
  • This study's purpose was to investigate the characteristics of a traditional Korean rice wine containing lactic acid bacteria (LAB), called makgeolli. The makgeolli was brewed with the alcohol-tolerant Pediococcus acidilactici strain K3, and was analyzed for LAB cell counts, alcoholic content, turbidity, pH, total acidity, amino nitrogen, total sugars, reducing sugars, solid contents, and organic acids. The physicochemical properties of the makgeolli were mostly maintained during fermentation (9 d) and storage (15 d). We also monitored the properties of LAB-supplemented commercial makgeollies, after adding P. acidilactici K3 at a concentration of $10^7CFU/ml$ makgeolli, for one month. Most of their properties, such as alcoholic content, turbidity, pH, total acidity, amino nitrogen, total sugars, reducing sugars, solid contents, and organic acids, were preserved during storage at $10^{\circ}C$, suggesting that makgeolli supplemented with live LAB can be produced. These results suggest that alcohol-tolerant P. acidilactici K3 can be used for makgeolli brewing either as a starter or as a supplement.

Morphological Changes Induced in Listeria monocytogenes V7 by a Bacteriocin Produced by Pediococcus acidilactici

  • Heo, Seok;Lee, Si-Kyung;Lee, Chi-Ho;Min, Sang-Gi;Park, Jong-Seok;Kim, Hee-Yun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.663-667
    • /
    • 2007
  • Pediococcus acidilactici produces bacteriocin, which kills Listeria monocytogenes. The bactericidal mode of action of the bacteriocin against L. monocytogenes V7 was investigated by transmission electron microscopy. The bacteriocin was purified partially from the cell-free extract using Micro-Cel and cation-exchange chromatography, and the specific activity was increased 1,791 fold. The bacteriocin (6,400 AU/ml) was inoculated with L. monocytogenes V7 and incubated for 0.5h, 1h, 3h, and 6h. The bacteriocin was found to destroy most of the cell wall and released most of the inclusions in the cells after 6 h of incubation. These results suggest that the bactericidal effect of the bacteriocin was due to bacterial lysis.

Isolation of the Cholesterol-Assimilating Strain Pediococcus acidilactici LRCC5307 and Production of Low-Cholesterol Butter

  • Kim, Yunsik;Yoon, Seokmin;Shin, Hyejung;Jo, Miyoun;Lee, Sunmin;Kim, Sae-hun
    • Food Science of Animal Resources
    • /
    • v.41 no.2
    • /
    • pp.300-311
    • /
    • 2021
  • The objective of the present study was to evaluate the cholesterol-assimilation ability of lactic acid bacteria (LAB), which were isolated from kimchi, a Korean traditional fermented cabbage. The isolated strain, using modified MRS medium, showed 30.5% cholesterol assimilation activity and was named Pediococcus acidilactici LRCC5307. Types and concentrations of bile were investigated for their effects on increasing the cholesterol assimilation ability of the LRCC5307 strain, a 74.5% decrease in cholesterol was observed when 0.2% bile salts were added. In addition, the manufacture of low-cholesterol butter using LRCC5307 was examined. After fermentation, LRCC5307 with butter showed 8.74 Log CFU/g viable cells, pH 5.43, and a 11% decrease in cholesterol. These results suggest that LRCC5307 could help in the production of healthier butter by decreasing cholesterol and including living LAB.

Melanin Bleaching and Melanogenesis Inhibition Effects of Pediococcus acidilactici PMC48 Isolated from Korean Perilla Leaf Kimchi

  • Kim, Sukyung;Seo, Hoonhee;Mahmud, Hafij Al;Islam, Md Imtiazul;Sultana, Omme Fatema;Lee, Youngkyoung;Kim, Minhee;Song, Ho-Yeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.1051-1059
    • /
    • 2020
  • Overproduction and accumulation of melanin in the skin will darken the skin and cause skin disorders. So far, components that can inhibit tyrosinase, a melanin synthase of melanocytes, have been developed and used as ingredients of cosmetics or pharmaceutical products. However, most of existing substances can only inhibit the biosynthesis of melanin while melanin that is already synthesized and deposited is not directly decomposed. Thus, their effects in decreasing melanin concentration in the skin are weak. To overcome the limitation of existing therapeutic agents, we started to develop a substance that could directly biodegrade melanin. We screened traditional fermented food microorganisms for their abilities to direct biodegrade melanin. As a result, we found that a kimchi-derived Pediococcus acidilactici PMC48 had a direct melanin-degrading effect. This PMC48 strain is a new strain, different from P. acidilactici strains reported so far. It not only directly degrades melanin, but also has tyrosinase-inhibiting effect. It has a direct melanin-decomposition effect. It exceeds existing melanin synthesis-inhibiting technology. It is expected to be of high value as a raw material for melanin degradation drugs and cosmetics.

Exopolysaccharide Produced by Pediococcus acidilactici M76 Isolated from the Korean Traditional Rice Wine, Makgeolli

  • Song, Young-Ran;Jeong, Do-Youn;Cha, Youn-Soo;Baik, Sang-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.5
    • /
    • pp.681-688
    • /
    • 2013
  • This work is aimed to increase knowledge of the functional exopolysaccharide (EPS) from lactic acid bacteria (LAB) in makgeolli, a Korean fermented rice wine. Among LAB strains isolated from makgeolli, strain M76 was selected as a functional strain producing a bioactive EPS, based on its antioxidative activity on the DPPH radical. The 16S rRNA gene sequencing analysis showed a high sequence similarity (99.0%) with P. acidilactici, but had different biochemical properties with the already known P. acidilactici type strains in the aspect of carbohydrates utilization. The obtained P. acidilactici M76 produced a soluble EPS above 2 g/l. One-step chromatography using gel filtration after ethanol precipitation from the supernatant of P. acidilactici M76 was enough to obtain purified EPS with a single peak, showing a molecular mass of approximately 67 kDa. Componential and structural analyses of EPS by TLC, HPLC, and FT-IR indicated that the EPS is a glucan, consisting of glucose units. The purified EPS had antioxidant activity on the DPPH radical of 45.8% at a concentration of 1 mg/ml. The purified EPS also showed proliferative effect on the pancreatic RIN-m5F cell line and remarkable protection activity on alloxan-induced cytotoxicity. This potent antioxidant and antidiabetic EPS by LAB in makgeolli may contribute to understanding the functionality of makgeolli.

Manufacture of Fermented Cantaloupe Melon with Lactic Starter Culture (유산균을 이용한 참외 발효식품의 제조)

  • Cha, Seong-Kwan;Chun, Hyong-Il;Hong, Seok-San;Kim, Wang-June;Koo, Young-Jo
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.386-390
    • /
    • 1993
  • Addition of starch syrup, table sugar, potato powder, skim milk powder an parched soybean powder to melon flesh was suitable as fermented melon base. The manufacturing process of fermented melon was as follows: Pasteurization for 10 min at $95^{\circ}C$, use of 1% starter culture, fermentation for 12 hours at $35^{\circ}C$ and ripening for 3 days at $8^{\circ}C$. The growth and acid production of Pediococcus acidilactici among several starter cultures were most active for the first 12 hours, but such activities were disappeared during ripening. In the case of Lactobacillus plantarum, the activities were not high during fermentation, which, however, increased during ripening. Throughout the whole manufacturing process, the fermented melon with a mixed culture of P. acidilactici and L. plantarum showed more cell number of each bacterium and higher titratable acidity than that with single cultures. Also P. acidilactici surpressed the growth of L. plantarum during ripening.

  • PDF