Morphological Changes Induced in Listeria monocytogenes V7 by a Bacteriocin Produced by Pediococcus acidilactici

  • Heo, Seok (Department of Applied Biology and Chemistry, Konkuk University) ;
  • Lee, Si-Kyung (Department of Applied Biology and Chemistry, Konkuk University) ;
  • Lee, Chi-Ho (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Min, Sang-Gi (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Park, Jong-Seok (Harzard Substances Analysis Team, Gyeongin Regional KFDA) ;
  • Kim, Hee-Yun (Harzard Substances Analysis Team, Gyeongin Regional KFDA)
  • Published : 2007.04.30

Abstract

Pediococcus acidilactici produces bacteriocin, which kills Listeria monocytogenes. The bactericidal mode of action of the bacteriocin against L. monocytogenes V7 was investigated by transmission electron microscopy. The bacteriocin was purified partially from the cell-free extract using Micro-Cel and cation-exchange chromatography, and the specific activity was increased 1,791 fold. The bacteriocin (6,400 AU/ml) was inoculated with L. monocytogenes V7 and incubated for 0.5h, 1h, 3h, and 6h. The bacteriocin was found to destroy most of the cell wall and released most of the inclusions in the cells after 6 h of incubation. These results suggest that the bactericidal effect of the bacteriocin was due to bacterial lysis.

Keywords

References

  1. Ahn, C., C. H. Kim, H. K. Shin, Y. M. Lee, Y. S. Lee, and G. E. Ji. 2003. Antibiosis of pediocin-producing Pediococcus sp. KCA 1303-10 against Listeria monocytogenes in mixed cultures. J. Microbiol. Biotechnol. 13: 429-436
  2. Bhunia, A. K., M. C. Johnson, and B. Ray. 1987. Direct detection of an antimicrobial peptide of Pediococcus acidilactici in sodium dodecyl sulfate polyacrylamide gel electrophoresis. J. Ind. Microbiol. 2: 319-322 https://doi.org/10.1007/BF01569434
  3. Cho, S. Y., B. K. Park, K. D. Moon, and D. H. Oh. 2004. Prevalence of Listeria monocytogenes and related species in minimally processed vegetables. J. Microbiol. Biotechnol. 14: 515-519
  4. Dykes, G. A. 1995. Physical and metabolic causes of sublethal damage in Listeria monocytogenes after long-term chilled storage at 4$^{\circ}C$. J. Appl. Microbiol. 87: 915-922 https://doi.org/10.1046/j.1365-2672.1999.00947.x
  5. EL-Kest, S. E. and E. H. Marth. 1992. Transmission electron microscopy of unfrozen and frozen/thawed cells of Listeria monocytogenes treated with lipase and lysozyme. J. Food Prot. 55: 687-696 https://doi.org/10.4315/0362-028X-55.9.687
  6. Ennahar, S., D. Aoude-Wemer, O. Sorokine, A. V. Dorsselaer, F. Bringel, J. C. Hubert, and C. Hasselmann. 1996. Production of pediocin AcH by Lactobacillus plantarum WHE 92 isolated from cheese. Appl. Environ. Microbiol. 62: 4381-4387
  7. Farber, J. M. and P. I. Peterkin. 1991. Listeria monocytogenes, a food-borne pathogen. Microbiol. Rev. 55: 476-51l
  8. Ghosh, B. K. and R. G. E. Murray. 1967. Fine structure of Listeria monocytogenes in relation to protoplast formation. J. Bacteriol. 93: 411-426
  9. Gonzalez, C. F. and B. S. Kunka. 1987. Plasmid-associated bacteriocin production and sucrose fermentation in Pediococcus acidilactici. Appl. Environ. Microbiol. 53: 2534-2538
  10. Hoover, K. H. 1997. Minimally processed fruits and vegetables: Reducing microbial load by non thermal physical treatments. Food Technol. 51: 66-71
  11. Jang, S. S., E. Choo, K. Han, T. Miyamoto, S. Heu, and S. Ryu. 2006. Antibiotic resistance and genetic diversity of Listeria monocytogenes isolated from chicken carcasses in Korea. J. Microbiol. Biotechnol. 16: 1276-1284
  12. Kim, H. J., J. H. Kim, J. H. Son, H. J. Seo, S. J. Park, N. S. Paek, and S. K. Kim. 2004. Characterization of bacteriocin produced by Lactobacillus bulgaricus. J. Microbiol. Biotechnol. 14: 503-508
  13. Kim, H. W., I. W. Roh, K. M. Kim, T. S. Jang, S. D. Ha, K. B. Song, S. K. Park, W. Y. Lee, K. S. Youn, and D. H. Bae. 2006. Antimicrobial edible film developed from defatted com germ meal fermented by Bacillus subtilis. J. Microbiol. Biotechnol. 16: 597-604
  14. Kwon, D. Y., M. Koo, C. R. Ryoo, C. H. Kang, K. H. Min, and W. J. Kim. 2002. Bacteriocin produced by Pediococcus sp. in kimchi and its characteristics. J. Microbiol. Biotechnol. 12: 96-105
  15. Mackey, B. M., K. Forestiere, N. S. Isaacs, R. Stenning, and B. Brooker. 1994. The effect of high hydrostatic pressure on Salmonella thompson and examined by electron microscopy. Lett. Appl. Microbiol. 19: 429-432 https://doi.org/10.1111/j.1472-765X.1994.tb00973.x
  16. Moon, G. S., Y. R. Pyun, and W. J. Kim. 2005. Characterization of the pediocin operon of Pediococcus acidilactici K10 and expression of His-tagged recombinant pediocin PA-1 in Escherichia coli. J. Microbiol. Biotechnol. 15: 403-411
  17. Nes, I. F., D. B. Diep, L. S. Havarstein, M. B. Brurberg, V. Eijsink, and H. Holo. 1996. Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek 70: 113-128 https://doi.org/10.1007/BF00395929
  18. Park, S. Y., J. W. Choi, J. Yeon, M. J. Lee, D. H. Chung, M. G. Kim, K. H. Lee, K. S. Kim, D. H. Lee, G. J. Bahk, D. H. Bae, K. Y. Kim, C. H. Kim, and S. D. Ha. 2005. Predictive modeling for the growth of Listeria monocytogenes as a function of temperature, NaCl, and pH. J. Microbiol. Biotechnol. 15: 1323-1329
  19. Pugsley, A. P. 1984. The ins and outs of colicins. I. Production and translocation across membranes. Microbiol. Sci. 1: 168-175
  20. Pucci, M. J., E. R. Vedamuthu, B. S. Kunka, and P. A. Vandenbergh. 1988. Inhibition of Listeria monocytogenes by using bacteriocin PA-1 produced by Pediococcus acidilactici PAC 1.0. Appl. Environ. Microbiol. 54: 2349-2353
  21. Ruhr, E. and H. G. Sahl. 1985. Mode of action of the peptide antibiotic nisin and influence on the membrane potential of whole cells and on cytoplasmic and artificial membrane vesicles. Antimicrob. Agents Chemother. 27: 841-845 https://doi.org/10.1128/AAC.27.5.841
  22. Upreti, G. C. and R. D. Hinsdill. 1975. Production and mode of action of lactocin 27:Bacteriocin from a homofermentative Lactobacillus. Antimicrob. Agents Chemother. 7: 139-145 https://doi.org/10.1128/AAC.7.2.139
  23. Yildirim, Z. and M. G. Johnson. 1998. Detection and characterization of a bacteriocin produced by Lactococcus lactis subsp. cremoris R isolated from radish. Lett. Appl. Microbiol. 26: 297-304 https://doi.org/10.1046/j.1472-765X.1998.00335.x
  24. Yildirim, Z., D. K. Winters, and M. G. Johnson. 1999. Purification, amino acid sequence and mode of action of bifidocin B produced by Bifidobacterium bifidum NCFB 1454. J. Appl. Microbiol. 86: 45-54 https://doi.org/10.1046/j.1365-2672.1999.00629.x
  25. Zahller, J. and P. S. Stewart. 2002. Transmission electron microscopic study of antibiotic action on Klebsiella pneumoniae biofilm. Antimicrob. Agents Chemather. 46: 2679-2683 https://doi.org/10.1128/AAC.46.8.2679-2683.2002